《2018数学中考试题精选二(共14页).docx》由会员分享,可在线阅读,更多相关《2018数学中考试题精选二(共14页).docx(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上数 学 试 题 二1如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=在第一象限内的图象经过点D,交BC于点E若AB=4,CE=2BE,tanAOD=,则k的值为()A3 B2 C6 D122如图,AB是O的直径,MN是O的切线,切点为N,如果MNB=52,则NOA的度数为()A76 B56 C54 D52 3 某数学研究性学习小组制作了如下的三角函数计算图尺:在半径为1的半圆形量角器中,画一个直径为1的圆,把刻度尺CA的0刻度固定在半圆的圆心O处,刻度尺可以绕点O旋转从图中所示的图尺可读出sinAOB的值是()A B C D4如图,一次函数与反比例函数(
2、0)的图像交于A,B两点,点P在以C(2,0)为圆心,1为半径的C上,Q是AP的中点,已知OQ长的最大值为,则的值为()ABCD5如图,在ABC纸板中,AC=4,BC=2,AB=5,P是AC上一点,过点P沿直线剪下一个与ABC相似的小三角形纸板,如果有4种不同的剪法,那么AP长的取值范围是 6如图,ABC中,BAC90,BC5,将ABC绕点C按顺时针方向旋转90,点B对应点B落在BA的延长线上,若sinBAC,则AC_7如图,在RtABC中,B=90,AB=2,BC=将ABC绕点A按逆时针方向旋转90得到ABC,连接BC,则sinACB= 8如图,88的正方形网格纸上有扇形OAB和扇形OCD,
3、点O,A,B,C,D均在格点上若用扇形OAB围成一个圆锥的侧面,记这个圆锥的底面半径为r1;若用扇形OCD围成另个圆锥的侧面,记这个圆锥的底面半径为r2,则的值为 9如图,已知AB=8,P为线段AB上的一个动点,分别以AP,PB为边在AB的同侧作菱形APCD和菱形PBFE,点P,C,E在一条直线上,DAP=60M,N分别是对角线AC,BE的中点当点P在线段AB上移动时,点M,N之间的距离最短为 (结果留根号)10如图,点E,F,G分别在菱形ABCD的边AB,BC,AD上,AEAB,CFCB,AGAD已知EFG的面积等于6,则菱形ABCD的面积等于_11问题1:如图,在ABC中,AB=4,D是A
4、B上一点(不与A,B重合),DEBC,交AC于点E,连接CD设ABC的面积为S,DEC的面积为S(1)当AD=3时,= ;(2)设AD=m,请你用含字母m的代数式表示问题2:如图,在四边形ABCD中,AB=4,ADBC,AD=BC,E是AB上一点(不与A,B重合),EFBC,交CD于点F,连接CE设AE=n,四边形ABCD的面积为S,EFC的面积为S请你利用问题1的解法或结论,用含字母n的代数式表示12观察与思考:阅读下列材料,并解决后面的问题在锐角ABC中,A、B、C的对边分别是a、b、c,过A作ADBC于D(如图(1),则,即AD=csinB,AD=bsinC,于是csinB=bsinC,
5、即,同理有:,所以即:在一个三角形中,各边和它所对角的正弦的比相等在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素根据上述材料,完成下列各题 (1)如图(2),ABC中,B=45,C=75,BC=60,则A= ;AC= ;(2)自从去年日本政府自主自导“钓鱼岛国有化”闹剧以来,我国政府灵活应对,现如今已对钓鱼岛执行常态化巡逻某次巡逻中,如图(3),我渔政204船在C处测得A在我渔政船的北偏西30的方向上,随后以40海里/时的速度按北偏东30的方向航行,半小时后到达B处,此时又测得钓鱼岛A在的北偏西75的方向上,求此时渔政204船距钓鱼岛A的距离A
6、B(结果精确到0.01,)13如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D (1)求二次函数的表达式;(2)在y轴上是否存在一点P,使PBC为等腰三角形?若存在请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从 点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,MNB面积最大,试求出最大面积14如图1,在ABC中,ACB=90,BC=2,A=30,点E,F分别是线段BC,AC的中点,
7、连结EF(1)线段BE与AF的位置关系是 , = (2)如图2,当CEF绕点C顺时针旋转a时(0a180),连结AF,BE,(1)中的结论是否仍然成立如果成立,请证明;如果不成立,请说明理由(3)如图3,当CEF绕点C顺时针旋转a时(0a180),延长FC交AB于点D,如果AD=62,求旋转角a的度数来源:学|科|网数 学 试 题 二 答 案1如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=在第一象限内的图象经过点D,交BC于点E若AB=4,CE=2BE,tanAOD=,则k的值为()A3 B2 C6 D12【解答】解:tanAOD=,设AD=3a、OA=4a,则BC=AD=3a
8、,点D坐标为(4a,3a),CE=2BE,BE=BC=a,AB=4,点E(4+4a,a),反比例函数y=经过点D、E,k=12a2=(4+4a)a,解得:a=或a=0(舍),则k=12=3,故选:A2如图,AB是O的直径,MN是O的切线,切点为N,如果MNB=52,则NOA的度数为()A76B56 C54D52【解答】解:MN是O的切线,ONNM,ONM=90,ONB=90MNB=9052=38,ON=OB,B=ONB=38,NOA=2B=76故选:A3 某数学研究性学习小组制作了如下的三角函数计算图尺:在半径为1的半圆形量角器中,画一个直径为1的圆,把刻度尺CA的0刻度固定在半圆的圆心O处,
9、刻度尺可以绕点O旋转从图中所示的图尺可读出sinAOB的值是()A B C D【解答】解:如图,连接AD OD是直径,OAD=90,AOB+AOD=90,AOD+ADO=90,AOB=ADO,sinAOB=sinADO=,故选:D4如图,一次函数与反比例函数(0)的图像交于A,B两点,点P在以C(2,0)为圆心,1为半径的C上,Q是AP的中点,已知OQ长的最大值为,则的值为()ABCD【解答】解:连接BP,由对称性得:OA=OB,Q是AP的中点,OQ=BP,OQ长的最大值为,BP长的最大值为2=3,如图,当BP过圆心C时,BP最长,过B作BDx轴于D,CP=1,BC=2,B在直线y=2x上,设
10、B(t,2t),则CD=t(2)=t+2,BD=2t,在RtBCD中,由勾股定理得:BC2=CD2+BD2,22=(t+2)2+(2t)2,t=0(舍)或,B(,),点B在反比例函数y=(k0)的图象上,k=;故选:C5如图,在ABC纸板中,AC=4,BC=2,AB=5,P是AC上一点,过点P沿直线剪下一个与ABC相似的小三角形纸板,如果有4种不同的剪法,那么AP长的取值范围是 【解答】解:如图所示,过P作PDAB交BC于D或PEBC交AB于E,则PCDACB或APEACB,此时0AP4;如图所示,过P作APF=B交AB于F,则APFABC,此时0AP4;如图所示,过P作CPG=CBA交BC于
11、G,则CPGCBA, 此时,CPGCBA,当点G与点B重合时,CB2=CPCA,即22=CP4,CP=1,AP=3,此时,3AP4;综上所述,AP长的取值范围是3AP4故答案为:3AP46如图,ABC中,BAC90,BC5,将ABC绕点C按顺时针方向旋转90,点B对应点B落在BA的延长线上,若sinBAC,则AC_【解答】解:作CDBB于D,如图,ABC绕点C按顺时针方向旋转90,点B对应点B落在BA的延长线上,CB=CB=5,BCB=90,BCB为等腰直角三角形,BB=BC=5,CD=BB=,在RtACD中,sinDAC=,AC=故答案为7如图,在RtABC中,B=90,AB=2,BC=将A
12、BC绕点A按逆时针方向旋转90得到ABC,连接BC,则sinACB= 【解答】解:在RtABC中,由勾股定理得:AC=5,过C作CMAB于M,过A作ANCB于N,根据旋转得出AB=AB=2,BAB=90,即CMA=MAB=B=90,CM=AB=2,AM=BC=,BM=2=,在RtBMC中,由勾股定理得:BC=5,SABC=,5AN=22,解得:AN=4,sinACB=,故答案为:8如图,88的正方形网格纸上有扇形OAB和扇形OCD,点O,A,B,C,D均在格点上若用扇形OAB围成一个圆锥的侧面,记这个圆锥的底面半径为r1;若用扇形OCD围成另个圆锥的侧面,记这个圆锥的底面半径为r2,则的值为
13、【解答】解:2r1=、2r2=,r1=、r2=,=,故答案为:9如图,已知AB=8,P为线段AB上的一个动点,分别以AP,PB为边在AB的同侧作菱形APCD和菱形PBFE,点P,C,E在一条直线上,DAP=60M,N分别是对角线AC,BE的中点当点P在线段AB上移动时,点M,N之间的距离最短为 (结果留根号)【解答】解:连接PM、PN四边形APCD,四边形PBFE是菱形,DAP=60,APC=120,EPB=60,M,N分别是对角线AC,BE的中点,CPM=APC=60,EPN=EPB=30,来。MPN=60+30=90,设PA=2a,则PB=82a,PM=a,PN=(4a),MN=,a=3时
14、,MN有最小值,最小值为2,故答案为210如图,点E,F,G分别在菱形ABCD的边AB,BC,AD上,AEAB,CFCB,AGAD已知EFG的面积等于6,则菱形ABCD的面积等于_【解答】解:在CD上截取一点H,使得CH=CD连接AC交BD于O,BD交EF于Q,EG交AC于P=,EGBD,同法可证:FHBD,EGFH,同法可证EFGF,四边形EFGH是平行四边形,四边形ABCD是菱形,ACBD,EFEG,四边形EFGH是矩形,易证点O在线段FG上,四边形EQOP是矩形,SEFG=6,S矩形EQOP=3,即OPOQ=3,OP:OA=BE:AB=2:3,OA=OP,同法可证OB=3OQ,S菱形AB
15、CD=ACBD=3OP6OQ=9OPOQ=27故答案为2711问题1:如图,在ABC中,AB=4,D是AB上一点(不与A,B重合),DEBC,交AC于点E,连接CD设ABC的面积为S,DEC的面积为S(1)当AD=3时,= ;(2)设AD=m,请你用含字母m的代数式表示问题2:如图,在四边形ABCD中,AB=4,ADBC,AD=BC,E是AB上一点(不与A,B重合),EFBC,交CD于点F,连接CE设AE=n,四边形ABCD的面积为S,EFC的面积为S请你利用问题1的解法或结论,用含字母n的代数式表示【解答】解:问题1:(1)AB=4,AD=3,BD=43=1,DEBC,=,DEBC,ADEA
16、BC,=,=,即,故答案为:;(2)解法一:AB=4,AD=m,BD=4m,DEBC,=,=,DEBC,ADEABC,=,=,即=;解法二:如图1,过点B作BHAC于H,过D作DFAC于F,则DFBH,ADFABH,=,=,即=;问题2:如图,解法一:如图2,分别延长BD、CE交于点O,ADBC,OADOBC,OA=AB=4,OB=8,AE=n,OE=4+n,EFBC,由问题1的解法可知:=,=,=,=,即=;解法二:如图3,连接AC交EF于M,ADBC,且AD=BC,=,SADC=,SADC=S,SABC=,由问题1的结论可知:=,MFAD,CFMCDA,=,SCFM=S,SEFC=SEMC
17、+SCFM=+S=,=来源:Zx 12观察与思考:阅读下列材料,并解决后面的问题在锐角ABC中,A、B、C的对边分别是a、b、c,过A作ADBC于D(如图(1),则,即AD=csinB,AD=bsinC,于是csinB=bsinC,即,同理有:,所以即:在一个三角形中,各边和它所对角的正弦的比相等在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素根据上述材料,完成下列各题(1)如图(2),ABC中,B=45,C=75,BC=60,则A= ;AC= ;(2)自从去年日本政府自主自导“钓鱼岛国有化”闹剧以来,我国政府灵活应对,现如今已对钓鱼岛执行常态化
18、巡逻某次巡逻中,如图(3),我渔政204船在C处测得A在我渔政船的北偏西30的方向上,随后以40海里/时的速度按北偏东30的方向航行,半小时后到达B处,此时又测得钓鱼岛A在的北偏西75的方向上,求此时渔政204船距钓鱼岛A的距离AB(结果精确到0.01,)【解答】解:(1)由正玄定理得:A=60,AC=20; 故答案为:60,20; (2)如图,依题意:BC=400.5=20(海里),CDBE,DCB+CBE=180DCB=30,CBE=150ABE=75,ABC=75A=45 在ABC中,即,解之得:AB=1024.49海里 所以渔政204船距钓鱼岛A的距离约为24.49海里13如图,关于x
19、的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使PBC为等腰三角形?若存在请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从 点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,MNB面积最大,试求出最大面积【解答】解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,解得:b=4,c=3,二次函数的表达式为:y=x24x+3;(2)令
20、y=0,则x24x+3=0,解得:x=1或x=3,B(3,0),BC=3,点P在y轴上,当PBC为等腰三角形时分三种情况进行讨论:如图1,当CP=CB时,PC=3,OP=OC+PC=3+3或OP=PCOC=33P1(0,3+3),P2(0,33);当BP=BC时,OP=OB=3,P3(0,3);当PB=PC时,OC=OB=3,此时P与O重合,P4(0,0);综上所述,点P的坐标为:(0,3+3)或(0,33)或(0,3)或(0,0);(3)如图2,设A运动时间为t,由AB=2,得BM=2t,则DN=2t,SMNB=(2t)2t=t2+2t=(t1)2+1,即当M(2,0)、N(2,2)或(2,
21、2)时MNB面积最大,最大面积是114如图1,在ABC中,ACB=90,BC=2,A=30,点E,F分别是线段BC,AC的中点,连结EF(1)线段BE与AF的位置关系是 , = (2)如图2,当CEF绕点C顺时针旋转a时(0a180),连结AF,BE,(1)中的结论是否仍然成立如果成立,请证明;如果不成立,请说明理由(3)如图3,当CEF绕点C顺时针旋转a时(0a180),延长FC交AB于点D,如果AD=62,求旋转角a的度数来源:学|科|网【解答】解:(1)如图1,线段BE与AF的位置关系是互相垂直;ACB=90,BC=2,A=30,AC=2,点E,F分别是线段BC,AC的中点,=;故答案为:互相垂直;(2)(1)中结论仍然成立证明:如图2,点E,F分别是线段BC,AC的中点,EC=BC,FC=AC,=,BCE=ACF=,BECAFC,=,1=2,延长BE交AC于点O,交AF于点MBOC=AOM,1=2,BCO=AMO=90BEAF;(3)如图3,ACB=90,BC=2,A=30AB=4,B=60过点D作DHBC于HDB=4(62)=22,BH=1,DH=3,又CH=2(1)=3,CH=DH,HCD=45,DCA=45,=18045=135专心-专注-专业