《八年级数学---全等三角形-分节练习(共10页).doc》由会员分享,可在线阅读,更多相关《八年级数学---全等三角形-分节练习(共10页).doc(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上第十三章 全等三角形第1课时 全等三角形一、选择题1如图,已知ABCDCB,且AB=DC,则DBC等于( )AA BDCB CABC DACB2已知ABCDEF,AB=2,AC=4,DEF的周长为偶数,则EF的长为( )ABCDE(第4题)AODBC(第1题)A3 B4 222 C5 D 6二、填空题3已知ABCDEF,A=50,B=65,DE=18,则F=_,AB=_4如图,ABC绕点A旋转180得到AED,则DE与BC的位置关系是_,数量关系是_ABECD(第5题)三、解答题5把ABC绕点A逆时针旋转,边AB旋转到AD,得到ADE,用符号“”表示图中与ABC全等的
2、三角形,并写出它们的对应边和对应角ABFEDC6如图,把ABC沿BC方向平移,得到DEF求证:ACDF。(第6题)ACFED7如图,ACFADE,AD=9,AE=4,求DF的长(第7题)第2课时 三角形全等的条件(1)一、选择题1 如果ABC的三边长分别为3,5,7,DEF的三边长分别为3,3x2,2x1,若这两个三角形全等,则x等于( )A B3 C4 D5二、填空题2如图,已知AC=DB,要使ABCDCB,还需知道的一个条件是_ADBC(第2题)AFECDB(第3题)ABC(第4题)3已知AC=FD,BC=ED,点B,D,C,E在一条直线上,要利用“SSS”,还需添加条件_,得ACB_4如
3、图ABC中,AB=AC,现想利用证三角形全等证明B=C,若证三角形全等所用的公理是SSS公理,则图中所添加的辅助线应是_二、解答题5 如图,A,E,C,F在同一条直线上,AB=FD,BC=DE,AE=FCDCEFBA(第5题)求证:ABCFDE(第6题)ABCD6如图,AB=AC,BD=CD,那么B与C是否相等?为什么?DCEBA(第7题)7如图,AB=AC,AD = AE,CD=BE求证:DAB=EAC第3课时 三角形全等的条件(2)一、填空题ABEDC(第1题)1如图,ABAC,如果根据“SAS”使ABEACD,那么需添加条件_ACDBEF(第2题)2如图,ABCD,BCAD,AB=CD,
4、BE=DF,图中全等三角形有_对3下列命题:腰和顶角对应相等的两个等腰三角形全等;两条直角边对应相等的两个直角三角形全等;有两边和一角对应相等的两个三角形全等;等腰三角形顶角平分线把这个等腰三角形分成两个全等的三角形其中正确的命题有_(第4题)ABCDE二、解答题4 已知:如图,C是AB的中点,ADCE,AD=CE求证:ADCCEBDCFBAE(第5题)5 如图, A,C,D,B在同一条直线上,AE=BF,AD=BC,AEBF.求证:FDECABCED(第6题)6已知:如图,ACBD,BC=CE,AC=DC求证:B+D=90;第4课时 三角形全等的条件(3)一、选择题1下列说法正确的是( )A
5、有三个角对应相等的两个三角形全等ABFEDCB有一个角和两条边对应相等的两个三角形全等C有两个角和它们夹边对应相等的两个三角形全等D面积相等的两个三角形全等二、填空题(第2题)2如图,BDEF,BCEF, 要证ABCDEF,(1)若以“SAS”为依据,还缺条件 ;(2)若以“ASA”为依据,还缺条件 3如图,在ABC中,BDEC,ADBAEC,BC,则CAE (第3题)三、解答题ABCDO4已知:如图,ABCD,OA=OC求证:OB=OD(第4题)AECBD5已知:如图,ACCE,AC=CE,ABC=CDE=90,求证:BD=AB+ED(第5题)OEADBC(第6题)6已知:如图,AB=AD,
6、BO=DO,求证:AE=AC第5课时 三角形全等的条件(4)一、选择题1已知ABC的六个元素,则下面甲、乙、丙三个三角形中和ABC全等的图形是( )A甲和乙 B乙和丙 C只有乙 D只有丙二、填空题2如图,已知A=D,ABC=DCB,AB=6,则DC= ABEDCF3如图,已知A=C,BEDF,若要用“AAS”证ABECDF,则还需添加的一个条件是 (只要填一个即可)DCBA(第2题)(第3题)ADBCo三、解答题4已知:如图,AB=CD,AC=BD,写出图中所有全等三角形,并注明理由(第4题)5如图,如果ACEF,那么根据所给的数据信息,图中的两个三角形全等吗?请说明理由(第5题)6如图,已知
7、12,34,ECAD,求证:ABBE(第6题)第6课时 三角形全等的条件(5)一、选择题1使两个直角三角形全等的条件是( )A一个锐角对应相等 B两个锐角对应相等C一条边对应相等 D。一直角边和斜边对应相等二、填空题2如图,BE和CF是ABC的高,它们相交于点O,且BE=CD,则图中有 对全等三角形,其中能根据“HL”来判定三角形全等的有 对ABCED(第2题)O3如图,有两个长度相同的滑梯(即BCEF),左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则ABCDFE_度(第3题)三、解答题ABDFCE4已知:如图,AC=DF,BF=CE,ABBF,DEBE,垂足分别为B,E求证:AB=D
8、E(第4题)(第5题)ABCDEF5如图,ABC中,D是BC边的中点, AD平分BAC,DEAB于E,DFAC于F.求证:(1)DE= DF;(2)B =CABCDEF(第6题)6如图,AD为ABC的高,E为AC上一点,BE交AD于点F,且有BF=AC,FD=CD求证:BEAC第7课时 三角形全等的条件(6)一、选择题1下列条件中,不一定能使两个三角形全等的是 ( )A三边对应相等 B两角和其中一角的对边对应相等C两边和其中一边的对角对应相等 D两边和它们的夹角对应相等2如图,E点在AB上,ACAD,BCBD,则全等三角形的对数有 ( ) ACBEDA1 B2 C3 D43有下列命题:两边及第
9、三边上的高对应相等的两个三角形全等;两边及其中一边上的中线对应相等的两个三角形全等;(第2题)两边及第三边上的高对应相等的两个锐角三角形全等;有锐角为30的两直角三角形,有一边对应相等,则这两个三角形全等其中正确的是( )A B C DCAEBFD二、解答题4已知AC=BD,AF=BE,AEAD,FDAD求证:CE=DFDECBA(第4题)5已知:ABC中,AD是BC边上的中线,延长AD到E,使DE=AD猜想AB与CE的大小及位置关系,并证明你的结论(第5题)6如图,在ABC中,ABAC,D、E、F分别在AB、BC、AC上,且BDCE,DEFB,图中是否存在和BDE全等的三角形?并证明(第6题
10、)第8课时 角平分线的性质(1)一、选择题1用尺规作已知角的平分线的理论依据是( )ASAS BAAS CSSS DASA2如图,OP平分AOB, PDOA,PEOB,垂足分别为D,E,下列结论错误的是( )BAOEPDBDCA(第3题)APDPE BODOE CDPOEPO DPDOD(第2题)二、填空题3如图,在ABC中,C90,AD是BAC的角平分线,若BC5,BD3,则点D到AB的距离为_三、解答题MACBEOFDG(第4题)4已知:如图,AM是BAC的平分线,O是AM上一点,过点O分别作AB,AC的垂线,垂足为F,D,且分别交AC、AB于点G,E求证:OE=OG5如图,AD平分BAC
11、,DEAB于点E,DFAC于点F,且BD=CDDACEBF求证:BE=CF6如图,ABC中,C=90,AD是ABC的角平分线,DEAB于E,AD=BD(1)求证:AC =BE;EACDB(第6题)(2)求B的度数。第9课时 角平分线的性质 (2)一、选择题1三角形中到三边距离相等的点是( )A三条边的垂直平分线的交点 B三条高的交点C三条中线的交点 D三条角平分线的交点2如图,ABC中,AB=AC,AD是ABC的角平分线,DEAB于点E,DFAC于点F,有下面四个结论:DA平分EDF;AE=AF;AD上的点到B,C两点的距离相等;到AE,AF的距离相等的点到DE,DF的距离也相等其中正确的结论
12、有( )DEAFBC(第2题)EFCBAD(第3题)A1个 B2个 C3个 D4个二、填空题3如图,在ABC中,AD为BAC的平分线,DEAB于E,DFAC于F,ABC面积是28 cm2,AB=20cm,AC=8cm,则DE的长为_ cmEFADBC第4题三、解答题4已知:如图,BD=CD,CFAB于点F,BEAC于点E求证:AD平分BAC5如图,ADBC,DAB的平分线与CBA的平分线交于点P,过点P的直线垂直于AD,垂足为点D,交BC于点C试问:(1)点P是线段CD的中点吗?为什么?ABCDP(第5题)(2)线段AD与线段BC的和等于图中哪一条线段的长度?为什么?专心-专注-专业答案与提示
13、第1课时 全等三角形1D 2B 365;18 4平行;相等 5ADEABC,对应边:AD=AB,DE=BC,AE=AC;对应角:D =B,DAE=BAC,E =C 6略 75 第2课时 三角形全等的条件(1)1B 2AB=DC 3AB=FE,FDE 4取BC边的中点D,连结AD 5证AC=EF 6连接AD 7证ADCABE 第3课时 三角形全等的条件(2)1AE=AD 23 3 4略 5证ACEBDF 6(1)先证ABCDEC,可得D =A,因为B+A=90,所以B+D=90;第4课时 三角形全等的条件(3)1C 2(1)AB=DE (2)ACB=F 3BAD 4略 5证ABCCDE 6连接A
14、O第5课时 三角形全等的条件(4)1B 26 3AB=CD或BE=DF 4ABCDCB(SSS),ABDDCA(SSS),ABODCO(AAS)或(ASA) 5全等,用“AAS”或“ASA”可以证明 6证ABDEBC第6课时 三角形全等的条件(5)1D 25,4 390 4利用“HL”证RtABC RtDEF 5(1)证明略;(2)证BDECDF 6证BDFADC,得BFD=C,由BFD+FBD=90,得C+FBD=90第7课时 三角形全等的条件(6)1C 2C 3D 4略 5相等,平行,利用“SAS”证明ABDECD 6存在CEFBDE利用“ASA”证明 第8课时 角平分线的性质(1)1C 2D 32 4利用角平分线的性质可得OD=OF,然后证明ODGOFE 5证BDECDF 6(1)略;(2)30 第8课时 角平分线的性质(2)1D 2D 32 4证BDFCDE,得DF=DE 5(1)点P是线段CD的中点;(2)AD+BC=AB