《2010年全国各地高考数学真题分章节分类汇编(共36页).doc》由会员分享,可在线阅读,更多相关《2010年全国各地高考数学真题分章节分类汇编(共36页).doc(36页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上2010年全国各地高考数学真题分章节分类汇编第10部分:圆锥曲线一、选择题:1( 2010年高考全国卷I理科9)已知、为双曲线C:的左、右焦点,点p在C上,p=,则P到x轴的距离为(A) (B) (C) (D) 1.B 【命题意图】本小题主要考查双曲线的几何性质、第二定义、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力.【解析】不妨设点P在双曲线的右支,由双曲线的第二定义得,.由余弦定理得cosP=,即cos,解得,所以,故P到x轴的距离为2(2010年高考福建卷理科2)以抛物线的焦点为圆心,且过坐标原点的圆的方程为( )A. B.
2、C. D. 【答案】D【解析】因为已知抛物线的焦点坐标为(1,0),即所求圆的圆心,又圆过原点,所以圆的半径为,故所求圆的方程为,即,选D。【命题意图】本题考查抛物线的几何性质以及圆的方程的求法,属基础题。3(2010年高考福建卷理科7)若点O和点分别是双曲线的中心和左焦点,点P为双曲线右支上的任意一点,则的取值范围为 ( )A. B. C. D. 【答案】B【解析】因为是已知双曲线的左焦点,所以,即,所以双曲线方程为,设点P,则有,解得,因为,所以=,此二次函数对应的抛物线的对称轴为,因为,所以当时,取得最小值,故的取值范围是,选B。【命题意图】本题考查待定系数法求双曲线方程,考查平面向量的
3、数量积的坐标运算、二次函数的单调性与最值等,考查了同学们对基础知识的熟练程序以及知识的综合应用能力、运算能力。4(2010年高考安徽卷理科5)双曲线方程为,则它的右焦点坐标为A、B、C、D、5.C【解析】双曲线的,所以右焦点为.【误区警示】本题考查双曲线的交点,把双曲线方程先转化为标准方程,然后利用求出c即可得出交点坐标.但因方程不是标准形式,很多学生会误认为或,从而得出错误结论.5.(2010年高考天津卷理科5) 已知双曲线的一条渐近线方程是,它的一个焦点在抛物线的准线上,则双曲线的方程为(A) (B)(C) (D) 【答案】B【解析】因为双曲线的一个焦点在抛物线的准线上,所以F(-6,0)
4、是双曲线的左焦点,即,又双曲线的一条渐近线方程是, 所以,解得,所以双曲线的方程为,故选B。6(2010年高考四川卷理科9)椭圆的右焦点,其右准线与轴的交点为A,在椭圆上存在点P满足线段AP的垂直平分线过点,则椭圆离心围是w_w_w.k*s 5*u.c o*m(A) (B) (C) (D)解析:由题意,椭圆上存在点P,使得线段AP的垂直平分线过点,即F点到P点与A点的距离相等w_w w. k#s5_u.c o*m而|FA| w_w_w.k*s 5*u.c o*m |PF|ac,ac于是ac,ac即acc2b2acc2 w_w_w.k*s 5*u.c o*m又e(0,1)故e答案:D7. (20
5、10年全国高考宁夏卷12)已知双曲线的中心为原点,是的焦点,过F的直线与相交于A,B两点,且AB的中点为,则的方程式为(A) (B) (C) (D) 【答案】B 解析:由已知条件易得直线的斜率为,设双曲线方程为,则有,两式相减并结合得,从而,即,又,解得,故选B8(2010年高考陕西卷理科8)已知抛物线的准线与圆相切,则的值为 【 】 【答案】C【解析】由题设知,直线与圆相切,从而.故选.9(2010年高考浙江卷8)设,分别为双曲线的左,右焦点。若在双曲线右支上存在点,满足=,且到直线的距离等于双曲线的实轴长,则该双曲线的渐近方程为 (A) (B) (C) (D) 【答案】C10(2010年高
6、考辽宁卷理科7)设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PAl,A为垂足如果直线AF的斜率为,那么|PF|= (A) (B)8 (C) (D) 16【答案】B11(2010年高考辽宁卷理科9)设双曲线的个焦点为F;虚轴的个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为 (A) (B) (C) (D) 【答案】D12(2010年高考全国2卷理数12)已知椭圆的离心率为,过右焦点且斜率为的直线与相交于两点若,则(A)1 (B) (C) (D)213(2010年上海市春季高考17)答案:B解析:由即,则。故“”推不出“直线与抛物线有两个不同的交点”,但“直
7、线与抛物线有两个不同的交点”则必有“”。故选B.二、填空题:1( 2010年高考全国卷I理科16)已知是椭圆的一个焦点,是短轴的一个端点,线段的延长线交于点,且,则的离心率为 .1.【命题意图】本小题主要考查椭圆的方程与几何性质、第二定义、平面向量知识,考查了数形结合思想、方程思想,本题凸显解析几何的特点:“数研究形,形助数”,利用几何性质可寻求到简化问题的捷径.【解析】如图,,作轴于点D1,则由,得,所以,即,由椭圆的第二定义得又由,得,整理得.两边都除以,得,解得.2. (2010年高考湖南卷理科14)【解析】抛物线的焦点坐标为F(0,),则过焦点斜率为1的直线方程为,设A(),由题意可知
8、由,消去y得,由韦达定理得,所以梯形ABCD的面积为:所以【命题意图】本题考查抛物线的焦点坐标,直线的方程,直线与抛物线的位置关系,考察考生的运算能力,属中档题3(2010年高考江苏卷试题6)在平面直角坐标系xOy中,双曲线上一点M,点M的横坐标是3,则M到双曲线右焦点的距离是_【答案】4 解析考查双曲线的定义。,为点M到右准线的距离,=2,MF=4。4(2010年高考北京卷理科13)已知双曲线的离心率为2,焦点与椭圆的焦点相同,那么双曲线的焦点坐标为 ;渐近线方程为 。【答案】;解析:双曲线焦点即为椭圆焦点,不难算出为,又双曲线离心率为2,即,故,渐近线为5(2010年高考江西卷理科15)点
9、在双曲线的右支上,若点到右焦点的距离等于,则 .【答案】26(2010年高考浙江卷13)设抛物线y2=2px(p0)的焦点为F,点A(0,2). 若线段FA的中点B在抛物线上,则B到该抛物线准线的距离为_.【答案】7(2010年高考全国2卷理数15)已知抛物线的准线为,过且斜率为的直线与相交于点,与的一个交点为若,则 【答案】2 【命题意图】本题主要考查抛物线的定义与性质.【解析】过B作BE垂直于准线于E,M为中点,又斜率为,M为抛物线的焦点,2.8(2010年高考上海市理科3)动点到点的距离与它到直线的距离相等,则的轨迹方程为 。【答案】【解析】由题意知, 的轨迹是以点为焦点,以直线为准线的
10、抛物线,所以,得出抛物线方程为,即为所求.9(2010年高考上海市理科13)如图所示,直线x=2与双曲线的渐近线交于,两点,记,任取双曲线上的点P,若,则a、b满足的一个等式是 【答案】4ab=110. (2010年高考重庆市理科14)已知以F为焦点的抛物线上的两点A、B满足,则弦AB的中点到准线的距离为_【答案】解析:设BF=m,由抛物线的定义知中,AC=2m,AB=4m, 直线AB方程为 与抛物线方程联立消y得所以AB中点到准线距离为。11(2010年上海市春季高考5)若椭圆上一点到焦点的距离为6,则点到另一个焦点的距离是 答案:4解析:由椭圆的定义知,故。12(2010年上海市春季高考7
11、)已知双曲线经过点,它的一条渐近线方程为,则双曲线的标准方程是 。答案:。解析:设双曲线的方程为,将点代入可得。故答案为。三、解答题:1(2010年高考山东卷理科)(本小题满分12分)如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左、右焦点为顶点的三角形的周长为.一等轴双曲线的顶点是该椭圆的焦点,设为该双曲线上异于顶点的任一点,直线和与椭圆的交点分别为和.()求椭圆和双曲线的标准方程;来源:学.科.网Z.X.X.K()设直线、的斜率分别为、,证明;()是否存在常数,使得恒成立?若存在,求的值;若不存在,请说明理由.【解析】()由题意知,椭圆离心率为,得,又,所以可解得,所以,所以椭圆的标准方
12、程为;所以椭圆的焦点坐标为(,0),因为双曲线为等轴双曲线,且顶点是该椭圆的焦点,所以该双曲线的标准方程为。()设点P(,),则=,=,所以=,又点P(,)在双曲线上,所以有,即,所以=1。()假设存在常数,使得恒成立,则由()知,所以设直线AB的方程为,则直线CD的方程为,由方程组消y得:,设,则由韦达定理得:所以|AB|=,同理可得|CD|=,又因为,所以有=+=,所以存在常数,使得恒成立。【命题意图】本题考查了椭圆的定义、离心率、椭圆与双曲线的标准方程、直线与圆锥曲线的位置关系,是一道综合性的试题,考查了学生综合运用知识解决问题的能力。其中问题(3)是一个开放性问题,考查了同学们观察、推
13、理以及创造性地分析问题、解决问题的能力。2(2010年高考福建卷理科17)(本小题满分13分)已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点。(1)求椭圆C的方程;(2)是否存在平行于OA的直线,使得直线与椭圆C有公共点,且直线OA与的距离等于4?若存在,求出直线的方程;若不存在,请说明理由。【命题意图】本小题主要考查直线、椭圆等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想。【解析】(1)依题意,可设椭圆C的方程为,且可知左焦点为F(-2,0),从而有,解得,又,所以,故椭圆C的方程为。(2)假设存在符合题意的直线,其方
14、程为,由得,因为直线与椭圆有公共点,所以有,解得,另一方面,由直线OA与的距离4可得:,从而,由于,所以符合题意的直线不存在。3 .(2010年高考天津卷理科20) (本小题满分12分)已知椭圆(0)的离心率,连接椭圆的四个顶点得到的菱形的面积为4。()求椭圆的方程:()设直线与椭圆相交于不同的两点。已知点的坐标为(-,0),点(0,)在线段的垂直平分线上,且=4。求的值。【命题意图】本小题主要考察椭圆的标准方程和几何性质,直线的方程,平面向量等基础知识,考查用代数方法研究圆锥曲线的性质及数形结合的思想,考查运算和推理能力。【解析】(1)解:由,得,再由,得由题意可知, 解方程组 得 a=2,
15、b=1所以椭圆的方程为(2)解:由(1)可知A(-2,0)。设B点的坐标为(x1,y1),直线l的斜率为k,则直线l的方程为y=k(x+2),于是A,B两点的坐标满足方程组由方程组消去Y并整理,得由得设线段AB是中点为M,则M的坐标为以下分两种情况:(1)当k=0时,点B的坐标为(2,0)。线段AB的垂直平分线为y轴,于是(2)当K时,线段AB的垂直平分线方程为令x=0,解得由整理得综上。4. (2010年高考数学湖北卷理科19)(本小题满分12分)已知一条曲线C在y轴右边,C上没一点到点F(1,0)的距离减去它到y轴距离的差是1.()求曲线C的方程;()是否存在正数m,对于过点M(m,0)且
16、与曲线C有连个交点A,B的任一直线,都有0 ? 若存在,求出m的取值范围;若不存在,请说明理由.5. (2010年高考湖南卷理科19)(本小题满分13分)为了考察冰川的融化状况,一支科考队在某冰川上相距8km的A,B两点各建一个考察基地视冰川面为平面形,以过A,B两点的直线为x轴,线段AB的垂直平分线为y轴建立平面直角坐标系(图6)在直线的右侧,考察范围为到点B的距离不超过km的区域;在直线的左侧,考察范围为到A,B两点的距离之和不超过km的区域()求考察区域边界曲线的方程;()如图6所示,设线段,是冰川的部分边界线(不考虑其他边界),当冰川融化时,边界线沿与其垂直的方向朝考察区域平行移动,第
17、一年移动0.2km,以后每年移动的距离为前一年的2倍,求冰川边界线移动到考察区域所需的最短时间冰 O化 区 域融 已 川 B(4,0)P3(8,6)图6A(-4,0)xyx=2【解析】()设边界曲线上点P的坐标为.当2时,由题意知当,因而其方程为故考察区域边界曲线(如图)的方程为()设过点P1,P2的直线为l1,点P2,P3的直线为l2,则直线l1,l2的方程分别为【命题意图】本题以应用题为背景,考查考察考生数学建模能力,考查圆的方程、椭圆的定义与方程、直线与圆锥曲线的位置关系、等比数列求和。本题属难题。6. (2010年高考安徽卷理科19)(本小题满分13分)已知椭圆经过点,对称轴为坐标轴,
18、焦点在轴上,离心率。 ()求椭圆的方程;()求的角平分线所在直线的方程;()在椭圆上是否存在关于直线对称的相异两点?若存在,请找出;若不存在,说明理由。7(2010年高考广东卷理科20)(本小题满分为14分) 一条双曲线的左、右顶点分别为A1,A2,点,是双曲线上不同的两个动点。 (1)求直线A1P与A2Q交点的轨迹E的方程式;(2)若过点H(0, h)(h1)的两条直线l1和l2与轨迹E都只有一个交点,且 ,求h的值。【解析】 来源:学,科,网故,即。(2)设,则由知,。将代入得,即,由与E只有一个交点知,即来源:学.科.网来源:学科网ZXXK。同理,由与E只有一个交点知,消去得,即,从而,
19、即。8. ( 2010年高考全国卷I理科21)(本小题满分12分)(注意:在试题卷上作答无效)已知抛物线的焦点为F,过点的直线与相交于、两点,点A关于轴的对称点为D .()证明:点F在直线BD上;()设,求的内切圆M的方程 .【命题意图】本小题为解析几何与平面向量综合的问题,主要考查抛物线的性质、直线与圆的位置关系,直线与抛物线的位置关系、圆的几何性质与圆的方程的求解、平面向量的数量积等知识,考查考生综合运用数学知识进行推理论证的能力、运算能力和解决问题的能力,同时考查了数形结合思想、设而不求思想.【解析】(21)解:设,的方程为.()由知, 因为 , 故 ,解得 所以的方程为 又由知 故直线
20、BD的斜率,因而直线BD的方程为因为KF为的平分线,故可设圆心,到及BD的距离分别为.由得,或(舍去),故 圆M的半径.所以圆M的方程为.9(2010年高考四川卷理科20)(本小题满分12分)已知定点A(1,0),F(2,0),定直线l:x,不在x轴上的动点P与点F的距离是它到直线l的距离的2倍.设点P的轨迹为E,过点F的直线交E于B、C两点,直线AB、AC分别交l于点M、N()求E的方程;()试判断以线段MN为直径的圆是否过点F,并说明理由.10(2010年高考江苏卷试题18)(本小题满分16分)在平面直角坐标系中,如图,已知椭圆的左、右顶点为A、B,右焦点为F。设过点T()的直线TA、TB
21、与椭圆分别交于点M、,其中m0,。(1)设动点P满足,求点P的轨迹;(2)设,求点T的坐标;(3)设,求证:直线MN必过x轴上的一定点(其坐标与m无关)。解析 本小题主要考查求简单曲线的方程,考查方直线与椭圆的方程等基础知识。考查运算求解能力和探究问题的能力。满分16分。(1)设点P(x,y),则:F(2,0)、B(3,0)、A(-3,0)。由,得 化简得。故所求点P的轨迹为直线。(2)将分别代入椭圆方程,以及得:M(2,)、N(,)直线MTA方程为:,即,直线NTB 方程为:,即。联立方程组,解得:,所以点T的坐标为。(3)点T的坐标为直线MTA方程为:,即,直线NTB 方程为:,即。分别与
22、椭圆联立方程组,同时考虑到,解得:、。(方法一)当时,直线MN方程为: 令,解得:。此时必过点D(1,0);当时,直线MN方程为:,与x轴交点为D(1,0)。所以直线MN必过x轴上的一定点D(1,0)。(方法二)若,则由及,得,此时直线MN的方程为,过点D(1,0)。若,则,直线MD的斜率,直线ND的斜率,得,所以直线MN过D点。因此,直线MN必过轴上的点(1,0)。11. (2010年全国高考宁夏卷20)(本小题满分12分)设分别是椭圆的左、右焦点,过斜率为1的直线与相交于两点,且成等差数列。(1)求的离心率; (2) 设点满足,求的方程(20.)解:(I)由椭圆定义知,又,得的方程为,其中
23、。设,则A、B两点坐标满足方程组化简的则因为直线AB斜率为1,所以得故所以E的离心率(II)设AB的中点为,由(I)知,。由,得,即得,从而故椭圆E的方程为。12(2010年高考陕西卷理科20)(本小题满分13分)如图,椭圆C:的顶点为A1,A2,B1,B2,焦点为F1,F2, | A1B1|= ,()求椭圆C的方程;()设n是过原点的直线,l是与n垂直相交于P点、与椭圆相交于A,B两点的直线,是否存在上述直线l使成立?若存在,求出直线l的方程;若不存在,请说明理由。解 (1)由知a2+b2=7, 由知a=2c, 又b2=a2-c2 由 解得a2=4,b2=3,故椭圆C的方程为。(2)设A,B
24、两点的坐标分别为(x1,y1)(x2,y2)假设使成立的直线l不存在,(1) 当l不垂直于x轴时,设l的方程为y=kx+m,由l与n垂直相交于P点且得来源:学。科。网,即m2=k2+1.,13(2010年高考北京市理科19)(本小题共14分)www.ks在平面直角坐标系xOy中,点B与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于.()求动点P的轨迹方程;()设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得PAB与PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由。(19)(共14分)www.ks(I)解:因为点B与A关于原点对称,所以点得
25、坐标为. 设点的坐标为 由题意得 化简得 . 故动点的轨迹方程为(II)解法一:设点的坐标为,点,得坐标分别为,. 则直线的方程为,直线的方程为令得,.于是得面积 又直线的方程为,点到直线的距离.于是的面积 当时,得又,所以=,解得。因为,所以故存在点使得与的面积相等,此时点的坐标为.解法二:若存在点使得与的面积相等,设点的坐标为 则. 因为, 所以 所以 即 ,解得 因为,所以 故存在点S使得与的面积相等,此时点的坐标为.14(2010年高考江西卷理科21)(本小题满分12分)设椭圆:,抛物线:. (1) 若经过的两个焦点,求的离心率;(2) 设,又为与不在轴上的两个交点,若的垂心为,且的重
26、心在上,求椭圆和抛物线的方程21(本小题满分12分)解:(1)因为抛物线经过椭圆的两个焦点,可得:,由得椭圆的离心率(2)由题设可知关于轴对称,设,则由的垂心为,有,所以 由于点在上,故有 式代入式并化简得:,解得或(舍去),所以,故,所以的重心为,因为重心在上得:,所以,又因为在上,所以,得所以椭圆的方程为:,抛物线的方程为:15(2010年高考辽宁卷理科20)(本小题满分12分)设椭圆C:的左焦点为F,过点F的直线与椭圆C相交于A,B两点,直线l的倾斜角为60o,.(I) 求椭圆C的离心率;(II) 如果|AB|=,求椭圆C的方程.16(2010年高考浙江卷理科21)(本小题满分15分)已
27、知m1,直线l:x-my-2=0,椭圆C:()2+y2=4 ,F1,F2分别为椭圆C的左右焦点。()当直线l过右焦点F2时,求直线l的方程;()设直线l与椭圆C交与A,B两点,AF1F2, BF1F2的重心分别为G,H.若原点O在以线段GH为直径的的圆内,求实数m的取值范围。(21)本题主要考察椭圆的几何性质,直线与椭圆,点与圆的位置关系等基础知识,同时考察解析几何的基本思想方法和综合解题能力。满分15分。 ()解:因为直线经过,所以,得,又因为,所以,故直线的方程为。()解:设。 由,消去得 则由,知,且有。由于,故为的中点,由,可知设是的中点,则,由题意可知即即而 所以即又因为且所以。所以
28、的取值范围是。17(2010年高考全国2卷理数21)(本小题满分12分) 己知斜率为1的直线l与双曲线C:相交于B、D两点,且BD的中点为来源:学科网 ()求C的离心率; ()设C的右顶点为A,右焦点为F,证明:过A、B、D三点的圆与x轴相切来源:学科网ZXXK【命题意图】本题主要考查双曲线的方程及性质,考查直线与圆的关系,既考查考生的基础知识掌握情况,又可以考查综合推理的能力.【参考答案】【点评】高考中的解析几何问题一般为综合性较强的题目,命题者将好多考点以圆锥曲线为背景来考查,如向量问题、三角形问题、函数问题等等,试题的难度相对比较稳定.18. (2010年高考重庆市理科20) (本小题满分12分,()小问5分,()小问7分)已知以原点O为中心,为右焦点的双曲线C的离心率.()求双曲线C的标准方程及其渐近线方程;()如题(20)图,已知过点的直线:与过点(其中)的直线:的交点E在双曲线C上,直线MN与双曲线的两条渐近线分别交于G、H两点,求OGH的面积Ol1yGMNExl2题(20)图专心-专注-专业