《7年级数学知识点归纳(共9页).doc》由会员分享,可在线阅读,更多相关《7年级数学知识点归纳(共9页).doc(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上(一)正负数1.正数:大于0的数。2.负数:小于0的数。3.0即不是正数也不是负数。4.正数大于0,负数小于0,正数大于负数。(二)有理数1有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:)2整数:正整数、0、负整数,统称整数。3分数:正分数、负分数。(三)数轴1数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数
2、轴上取点。)2数轴的三要素:原点、正方向、单位长度。3相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。4绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。(四)有理数的加减法1先定符号,再算绝对值。2加法运算法则:同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。3加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。4加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加
3、,和不变。5a-b=a+(-b)减去一个数,等于加这个数的相反数。(五)有理数乘法(先定积的符号,再定积的大小)1同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。2乘积是1的两个数互为倒数。3乘法交换律:ab=ba4乘法结合律:(ab)c=a(bc)5乘法分配律:a(b+c)=ab+ac(六)有理数除法1先将除法化成乘法,然后定符号,最后求结果。2除以一个不等于0的数,等于乘这个数的倒数。3两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。(七)乘方1求n个相同因数的积的运算,叫做乘方。写作an。(乘方的结果叫幂,a叫底数,n叫指数)2负数的奇数次幂
4、是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。3同底数幂相乘,底不变,指数相加。4同底数幂相除,底不变,指数相减。(八)有理数的加减乘除混合运算法则1先乘方,再乘除,最后加减。2同级运算,从左到右进行。3如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。(九)科学记数法、近似数、有效数字。第二章整式(一)整式1整式:单项式和多项式的统称叫整式。2单项式:数与字母的乘积组成的式子叫单项式。单独的一个数或一个字母也是单项式。3系数;一个单项式中,数字因数叫做这个单项式的系数。4。次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。5多项式:几个单项式的和叫做多项式。6项:
5、组成多项式的每个单项式叫做多项式的项。7常数项:不含字母的项叫做常数项。8多项式的次数:多项式中,次数最高的项的次数叫做这个多项式的次数。9同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。10合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。(二)整式加减整式加减运算时,如果遇到括号先去括号,再合并同类项。1去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。2合并同类项:把多项式中的同类项合并成一项,叫做合
6、并同类项。合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。整理了知识点,我们来看看相关的练习题吧。根据做题的情况分析有哪些知识点是自己还没有掌握的。1,从数轴上看,0是()A,最小整数B,最大的负数C,最小的有理数D最小的非负数2,一个数的相反数小于它本身,这个数是()A,非负数B,正数C,0D,负数3,冬季某天我国三个城市的最高气温分别是-10,1,-7,把它们从高到低排列正确的是()A,-10,-7,1B,-7,-10,1C,1,-7,-10D,1,-10,-74,下列说法正确的有()A,正数和负数统称为有理数B,有理数是指整数、分数、正有理数、负有理数和0五类C,一
7、个有理数不是整数就是分数D,整数包括正整数和负整数5,若a、b为有理数,a0,b0,且|a|b。C,若将数a、b在数轴上表示出来,则数a与原点的距离比较b与原点的距离小。D,在数轴上,表示a,|a|,b的点从左到右依次为a,b,|a|6,在下列代数式:(1/2)ab,(a+b)/2,ab2+b+1,(3/x)+(2/y),x3+x2-3中,多项式有()A2个B3个C4个D5个7,多项式23m2n2是()A二次二项式B三次二项式C四次二项式D五次二项式8,下列说法正确的是()A3x22x+5的项是3x2,2x,5B(3/x)(3/y)与2x22xy5都是多项式C多项式2x2+4xy的次数是D一个
8、多项式的次数是6,则这个多项式中只有一项的次数是69,下列说法正确的是()A整式abc没有系数B(x/2)+(y/3)+(z/4)不是整式C2不是整式D整式2x+1是一次二项式10,下列代数式中,不是整式的是()A、-3x2 B、(5a-4b)/7 C、(3a+2)/5x D、-2005要点一、同类项定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项几个常数项也是同类项要点诠释:(1)判断几个项是否是同类项有两个条件:所含字母相同;相同字母的指数分别相等,同时具备这两个条件的项是同类项,缺一不可(2)同类项与系数无关,与字母的排列顺序无关(3)一个项的同类项有无数个,其本身也是它的
9、同类项要点二、合并同类项1. 概念:把多项式中的同类项合并成一项,叫做合并同类项2法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变要点诠释:合并同类项的根据是乘法的分配律逆用,运用时应注意:系数相加(减),字母部分不变,不能把字母的指数也相加(减)把多项式中的同类项合并成一项,叫做同类项的合并(或合并同类项)。同类项的合并应遵照法则进行:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。为什么合并同类项时,要把各项的系数相加而字母和字母的指数都不改变,这有什么理论依据吗?其实,合并同类项法则是有其理论依据的。它所依据的就是大家早已熟知了的乘法分配律,a(b+c)=ab+ac。合并同类项实际上就是乘法分配律的逆向运用。即将同类项中的每一项都看成两个因数的积,由于各项中都含有相同的字母并且它们的指数也分别相同,故同类项中的每项都含有相同的因数。合并时将分配律逆向运用,用相同的那个因数去乘以各项中另一个因数的代数和。合并同类项时注意:(1)如果两个同类项的系数互为相反数,合并同类项后,结果为0。(2)不要漏掉不能合并的项。(3)只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。(4)不是同类项千万不能进行合并。参考答案15 DBCCD610 BABDC专心-专注-专业