2018高考全国卷1理科数学试题及答案解析(共17页).doc

上传人:飞****2 文档编号:13821170 上传时间:2022-05-01 格式:DOC 页数:17 大小:2.41MB
返回 下载 相关 举报
2018高考全国卷1理科数学试题及答案解析(共17页).doc_第1页
第1页 / 共17页
2018高考全国卷1理科数学试题及答案解析(共17页).doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《2018高考全国卷1理科数学试题及答案解析(共17页).doc》由会员分享,可在线阅读,更多相关《2018高考全国卷1理科数学试题及答案解析(共17页).doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上WORD 格式整理2018 年普通高等学校招生全国统一考试理科数学注意事项:1答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。2回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设1 i2i | z|z1 iA0 B12C1 D 22已知集合2 2 0A x x x ,则 eR

2、 AA x 1 x 2 B x 1 x 2C x| x 1 x | x 2 D x | x 1 x | x 23某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例则下面结论中不正确的是A新农村建设后,种植收入减少B新农村建设后,其他收入增加了一倍以上C新农村建设后,养殖收入增加了一倍D新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半专业技术参考资料专心-专注-专业WORD 格式整理4设 Sn 为等差数列 an 的前

3、n项和,若 3S3 S2 S4 , a1 2,则 a5A 12 B 10 C10 D125设函数3 2f x x a x ax ,若 f ( x) 为奇函数,则曲线 y f (x) 在点 (0,0) 处的切线方程为( ) ( 1)A y 2x B y x C y 2x D y x6在 ABC中, AD为 BC 边上的中线, E 为 AD 的中点,则 EBA3 1 AB AC B4 41 3 AB AC C4 43 1 AB AC D4 41 3AB AC4 47某圆柱的高为 2,底面周长为 16,其三视图如图圆柱表面上的点 M 在正视图上的对应点为 A ,圆柱表面上的点 N 在左视图上的对应点

4、为 B ,则在此圆柱侧面上,从 M 到 N 的路径中,最短路径的长度为A 2 17 B 2 5 C3 D28设抛物线 C:y 2=4x 的焦点为 F,过点( 2,0)且斜率为2=4x 的焦点为 F,过点( 2,0)且斜率为23的直线与 C 交于 M,N 两点,则 FM FN =A5 B6 C7 D89已知函数f (x)x xe , 0, g( x) f (x) x a 若 g(x)存在 2 个零点,则 a 的取值范围是ln x,x 0,A1,0) B0,+) C 1,+) D1,+)10下图来自古希腊数学家希波克拉底所研究的几何图形此图由三个半圆构成,三个半圆的直径分别为直角三角形 ABC 的

5、斜边 BC,直角边 AB,ACABC 的三边所围成的区域记为 I,黑色部分记为 II,其余部分记为 III 在整个图形中随机取一点,此点取自 I,II ,III 的概率分别记为 p1,p2,p3,则A p1=p2 Bp1=p3Cp2=p3 Dp1=p2+p3专业技术参考资料WORD 格式整理11已知双曲线 C:2x32 1y ,O 为坐标原点, F 为 C 的右焦点,过 F 的直线与 C 的两条渐近线的交点分别为 M、N.若OMN 为直角三角形,则 |MN |=A 32B3 C2 3 D412已知正方体的棱长为 1,每条棱所在直线与平面 所成的角相等, 则 截此正方体所得截面面积的最大值为A

6、3 34B2 33C3 24D32二、填空题:本题共 4 小题,每小题 5 分,共 20 分。x 2 y 2 013若 x , y 满足约束条件 x y 1 0,则 z 3x 2y 的最大值为 _y 014记 Sn 为数列 an 的前 n项和,若 Sn 2an 1 ,则 S6 _ 15从 2 位女生,4 位男生中选 3 人参加科技比赛, 且至少有 1 位女生入选, 则不同的选法共有 _种(用数字填写答案)16已知函数 f x 2sin x sin2 x ,则 f x 的最小值是 _ 三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。第 1721 题为必考题,每个试题考生都必须作

7、答。第 22、23 题为选考题,考生根据要求作答。(一)必考题: 60 分。17(12 分)在平面四边形 ABCD 中, ADC 90 , A 45 , AB 2, BD 5.(1)求 cos ADB ;(2)若 DC 2 2 ,求 BC .18(12 分)如图,四边形 ABCD 为正方形, E,F 分别为 AD, BC 的中点,以 DF 为折痕把 DFC 折起,使点 C到达点 P 的位置,且 PF BF .(1)证明:平面 PEF 平面 ABFD ;(2)求 DP 与平面 ABFD 所成角的正弦值 .专业技术参考资料WORD 格式整理19(12 分)设椭圆2x2C : y 1的右焦点为 F

8、,过 F 的直线 l 与C 交于 A, B 两点,点 M 的坐标为 (2,0) .2(1)当 l 与 x 轴垂直时,求直线 AM 的方程;(2)设 O 为坐标原点,证明: OMA OMB .20(12 分)某工厂的某种产品成箱包装,每箱 200 件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品检验时,先从这箱产品中任取 20 件作检验,再根据检验结果决定是否对余下的所有产品作检验, 设每件产品为不合格品的概率都为 p(0 p 1) ,且各件产品是否为不合格品相互独立(1)记 20 件产品中恰有 2 件不合格品的概率为 f ( p) ,求 f ( p)的最大值点p 0

9、(2)现对一箱产品检验了 20 件,结果恰有 2 件不合格品,以( 1)中确定的p 作为 p的值已知每0件产品的检验费用为 2 元,若有不合格品进入用户手中,则工厂要对每件不合格品支付 25 元的赔偿费用(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为 X ,求 EX ;(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?21(12 分)已知函数1f ( x) x aln xx(1)讨论 f (x) 的单调性;(2)若 f (x) 存在两个极值点x1, x2 ,证明:f x f x1 2x x1 2a2(二)选考题:共 10 分。请考生在

10、第 22、23 题中任选一题作答,如果多做,则按所做的第一题计分。22选修 44:坐标系与参数方程 (10 分)在直角坐标系 xOy 中,曲线C 的方程为 y k |x| 2 .以坐标原点为极点, x 轴正半轴为极轴建立极坐1专业技术参考资料WORD 格式整理标系,曲线C 的极坐标方程为22 2 cos 3 0 .(1)求 C2 的直角坐标方程;(2)若C 与 C2 有且仅有三个公共点,求 C1 的方程 .123选修 45:不等式选讲 (10 分)已知 f (x) | x 1| | ax 1| .(1)当 a 1时,求不等式 f (x) 1的解集;(2)若 x (0,1)时不等式 f ( x)

11、 x成立,求 a的取值范围 .专业技术参考资料WORD 格式整理2018 年普通高等学校招生全国统一考试理科数学参考答案:1 2 3 4 5 6 7 8 9 10 11 12C B A B D A B D C A B A13.6 14. 63 15.16 16.3 3217. (12 分)解:(1)在 ABD 中,由正弦定理得BD ABsin A sin ADB.由题设知,5 2sin 45 sin ADB,所以sin2ADB .5由题设知, ADB 90 ,所以 2 23cos ADB 1 . 25 5(2)由题设及( 1)知,2cos BDC sin ADB . 5在BCD 中,由余弦定理

12、得2 2 2 2 cosBC BD DC BD DC BDC25 8 2 5 2 22525.所以 BC 5 .18. (12 分)解:(1)由已知可得, BFPF,BFEF,所以 BF平面 PEF .又 BF 平面 ABFD ,所以平面 PEF平面 ABFD .(2)作 PHEF,垂足为 H.由(1)得, PH平面 ABFD .以 H 为坐标原点, HF 的方向为 y 轴正方向, |BF |为单位长, 建立如图所示的空间直角坐标系 H- xyz.专业技术参考资料WORD 格式整理由(1)可得, DEPE.又 DP=2,DE=1,所以 PE= 3 .又 PF=1,EF =2,故 PEPF.可得

13、 3 3PH , EH . 2 2则 3 3 3 3H (0,0,0), P(0,0, ), D( 1, ,0), DP (1, , ), 2 2 2 23HP (0,0, ) 为平面 ABFD 的法向量 .23设 DP 与平面 ABFD 所成角为 ,则HP DP4sin | | HP | | DP | 334.所以 DP 与平面 ABFD 所成角的正弦值为34.13.7 (12 分)解:(1)由已知得 F (1,0) ,l 的方程为 x=1.由已知可得,点 A 的坐标为 2(1, ) 2或 2(1, ) 2.所以 AM 的方程为2y x 2 或22y x 2 .2(2)当 l 与 x 轴重合

14、时, OMA OMB 0 .当 l 与 x 轴垂直时, OM 为 AB 的垂直平分线,所以 OMA OMB .当 l 与 x 轴不重合也不垂直时,设 l 的方程为 y k(x 1)(k 0) ,A(x , y ), B(x , y ) ,1 1 2 2则x1 2, x2 2 ,直线 MA,MB 的斜率之和为y y1 2k k .MA MB x x1 2 22由 y1 kx1 k, y2 kx2 k 得2kx x 3k( x x ) 4k1 2 1 2k k .MA MB( x 2)( x 2)1 2专业技术参考资料WORD 格式整理将 y k(x 1) 代入2x22 1y 得2 2 2 2(2

15、k 1)x 4k x 2k 2 0 .所以, 2 24k 2k 2x x , x x1 2 2 1222k 1 2k 1.则 3 3 34k 4k 12k 8k 4k2kx x 3k( x x ) 4k 0 .12 1 2 22k 1从而 k k 0 ,故 MA,MB 的倾斜角互补,所以 OMA OMB .MA MB综上, OMA OMB .13.8 (12 分)解:(1)20 件产品中恰有 2 件不合格品的概率为2 2 18f ( p) C p (1 p) .因此202 18 2 17 2 17f ( p) C 2 p(1 p) 18 p (1 p) 2C p(1 p) (1 10p) .2

16、0 20令 f ( p) 0 ,得 p 0.1.当 p (0,0.1) 时, f ( p) 0 ;当 p (0.1,1) 时, f ( p) 0 .所以 f ( p) 的最大值点为p0 0.1.(2)由( 1)知, p 0.1.(i)令 Y 表示余下的 180 件产品中的不合格品件数,依题意知 Y : B(180,0.1) , X 20 2 25Y ,即 X 40 25Y .所以 EX E (40 25Y ) 40 25EY 490.(ii)如果对余下的产品作检验,则这一箱产品所需要的检验费为 400 元.由于 EX 400,故应该对余下的产品作检验 .13.9 (12 分)解:(1) f (

17、x) 的定义域为 (0, ) ,21 a x ax 1f (x) 12 2x x x.(i)若 a 2,则 f (x) 0 ,当且仅当 a 2, x 1时 f (x) 0 ,所以 f (x) 在 (0, ) 单调递减 .(ii)若 a 2,令 f (x) 0得,2 4a ax 或22 4a ax .2专业技术参考资料WORD 格式整理当2 4 2 4a a a ax (0, )U ( , ) 时, f (x) 0 ;2 2当2 4 2 4a a a ax ( , ) 时, f (x) 0.所以 f (x) 在2 22 4 2 4a a a a(0, ),( , )2 2单调递减,在2 4 2

18、4a a a a( , ) 2 2单调递增 .(2)由( 1)知, f ( x) 存在两个极值点当且仅当 a 2.由于 f (x) 的两个极值点x1,x2 满足2 1 0x ax ,所以 x1x2 1,不妨设 x1 x2 ,则 x2 1.由于f (x ) f (x ) 1 ln x ln x ln x ln x 2ln x1 2 1 2 1 2 21 a 2 a 2 a1x x x x x x x x1 2 1 2 1 2 1 2 x2x2,所以f ( x ) f (x )1 2x x1 2a2等价于1x2x 2ln x 02 2.设函数1g(x) x 2ln xx,由(1)知, g( x)

19、在(0, ) 单调递减,又 g (1) 0 ,从而当 x (1, )时, g(x) 0.所以1x2x 2ln x 02 2,即f (x ) f (x )1 2x x1 2a 2.22选修 4-4:坐标系与参数方程 (10 分)【解析】(1)由 x cos , y sin 得C 的直角坐标方程为22 2( x 1) y 4(2)由( 1)知 C2 是圆心为 A( 1,0) ,半径为 2的圆由题设知, C1 是过点 B(0, 2) 且关于 y 轴对称的两条射线 记 y 轴右边的射线为l ,y 轴左边的射线为1l 由于 B 在圆 C2 的外面, 故 C1 与C2 有且仅有三个公共点等价于 l1 与C

20、2 只有一个公共点且 l2 与C2 有2两个公共点,或 l2 与C2 只有一个公共点且 l1 与C2 有两个公共点当l1 与C2 只有一个公共点时, A 到 l1 所在直线的距离为 2 ,所以| k 2 |2k 12,故4k k 03经检验,当 k 0时, l1 与C2 没有公共点;当4k 时, l1与C2 只有一个公共点, l2 与C2 有两个公3共点专业技术参考资料WORD 格式整理当l2 与C2 只有一个公共点时, A 到 l2 所在直线的距离为 2 ,所以| k 2 |2k 12,故 k 0或4k 3经检验,当 k 0时, l1 与C2 没有公共点;当4k 时, l2 与C2 没有公共

21、点3综上,所求 C1 的方程为4y | x | 2 323选修 4-5:不等式选讲 (10 分)2, x 1,【解析】(1)当 a 1时, f (x) | x 1| | x 1| ,即f (x) 2x, 1 x 1,2, x 1.故不等式 f ( x) 1的解集为 | 1 x x 2(2)当 x (0,1)时 | x 1| | ax 1| x 成立等价于当 x (0,1)时 | ax 1| 1成立若 a 0 ,则当 x (0,1) 时| ax 1| 1;若 a 0 ,| ax 1| 1的解集为0 x2a,所以2a1,故 0 a 2 综上, a 的取值范围为 (0, 2 每项建议案实施完毕,实施部门应根据结果写出总结报告,实事求是的说明产生的经济效益或者其他积极效果,呈报总经办。总经办应将实施完毕的建议案提交给评委会进行效果评估,确定奖励登记,对符合条件的项目,应整理材料,上报总经理审批后给建议人颁发奖励。总经办应做好合理化建议的统计记录及资料归档管理。专业技术参考资料

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁