《无穷级数求和问题的几种方法(共12页).doc》由会员分享,可在线阅读,更多相关《无穷级数求和问题的几种方法(共12页).doc(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上目 录摘要 21无穷级数求和问题的几种方法 21.1利用级数和的定义求和 21.2利用函数的幂级数展开式求和 31.3利用逐项求积和逐项求导定理求和 41.4逐项求极限 51.5利用级数求和 71.6构建微分方程 91.7拆项法 91.8将一般项写成某数列相邻项之差 102总结 123参考文献 12 无穷级数求和问题的几种方法摘要:无穷级数是数学分析中的一个重要内容,同时无穷级数求和问题,也是学生学习级数过程中较难掌握的部分.然而,无穷级数求和没有一个固定的方法可循.本文结合具体例子,根据无穷级数的不同特点,介绍几种常用的求无穷级数的和的方法和技巧.关键词:数项级数;
2、幂级数;级数求和无穷级数是数学分析中的一个重要内容,它是以极限理论为基础,用以表示函数,研究函数的性质以及进行数值计算的一种重要工具.然而数学分析中注重函数的敛散问题,却对无穷级数求和问题的方法介绍的比较少,所以求和问题是学生学习级数过程中较难掌握的部分.无穷级数求和没有一个固定的方法可循.本文结合具体例子,根据不同的无穷级数的不同特点,介绍几种常用的求无穷级数的和的方法和技巧.1利用级数和的定义求和定义 若级数的部分和数列收敛于有限值S,即,则称级数收敛,记为,此时S称为级数的和数;若部分和数数列发散,则称级数发散. 例1 求级数,的和 . 解: (1) (2)(1)-(2)得:即级数和 .
3、2利用函数的幂级数展开式求和利用函数的幂级数展开式可以解决某些级数的求和问题.下面是几个重要的幂级数展开式:例等等.例2 求的和.解 : =注意到得.3利用逐项求积和逐项求导定理求和定理 设幂级数的收敛半径为,其和函数为,则在内幂级数可以逐项积分和逐项微分.即:对内任意一点,有:并且逐项积分和逐项求导后的级数(显然是幂级数),其收敛半径仍为.例3 计算无穷级数之和.解:对于级数.两边从0积分到得,,两边从0积分到得,上式右边是原级数.故级数和,.例4 求幂级数的和函数.解:令,幂函数的收敛半径故原函数的收敛半径,从而收敛区间为,而知级数,记,且于是,对上式,从0到作积分得,=因此.4逐项求极限
4、如果函数在端点处无定义,那么可用求极限的方法讨论在端点处的和函数.例5 求幂级数的和函数.解:(1)容易验证该幂级数的收敛域为.(2)再求幂级数在其收敛区间上的和函数,下面用逐项求导的方法求解.设,则有再设,又有于是对上式两边进行积分,得并有.再进行积分,又得(3)最后讨论幂级数在其收敛域上的和函数.因为函数在处左连续,而幂级数在处收敛,所以等式在处也成立.但因在处无定义,故要改用逐项求极限来确定该幂级数在处的值,即由得到所以原幂级数的和函数为.5利用级数求和求某些数值级数的和可选择某个特殊的函数在或上展成傅里叶级数,然后再去适当的值或逐项积分即可.例6 求的和.解:可以看作是余弦函数在时的值
5、,因此可以考虑适当选取一个偶函数,满足对于上式左端利用分部积分,得到=注意到有取,则同时,这样在上的级数为令,得例7 证明: .证明:将函数展成傅里叶级数,是由柏塞瓦尔等式(函数连续),有即.6构建微分方程如果某些级数的一般项的分母类似于阶乘的级数时,可以利用经过逐项积分或逐项积分后得到的级数之和函数与原级数的和函数构成微分方程,然后解微分方程来求其和.例8 求级数之和.解:设幂级数则于是所得一阶微分方程:,其通解为由得因此得从而.7拆项法无穷级数求和时,有时根据一般项的特点,将一般项进行拆分来简化运算过程.例9 求幂级数的和函数.解:先求幂级数的收敛域.因为,且级数与都发散,所以幂级数的收敛
6、域为.由于因此,因为幂级数的收敛域为,所以所求和函数为,.8将一般项写成某数列相邻项之差用这一方法求无穷级数的和,首先需要解决:已知,如何求?当,其中形成公差为的等差数列时,(为待定因子).于常数项级数,如果能将一般项写某数列的相邻两项之差:且极限存在,则,所以.例10 求级数之和.解:一般项=令则,.例11 求的和.解: 则 .总之,穷级数求和没有一个固定的方法可循,其实无穷级数求和方法很多,我们要善于发现和总结.这里只介绍了一些常用的方法和技巧,希望对大家计算求和问题有一定的帮助.参考文献 :陈传璋.数学分析.北京:高等教育出版社.1983.裘兆泰.王承国.数学分析学习指导.北京:科学出版
7、社.2004.李素峰.关于无穷级数求和问题的探讨.邢台学院学报,2008,23(4):100-101.吴良森.毛羽辉.数学分析学习指导书.北京:高等教育出版.2004.刘玉琏.杨奎元.数学分析讲义学习辅导书.北京:高等教育出版社.1987.Several Methods of Problem of Infinite Series SummationLiuYanhong Mathematical sciences college,mathematics and applied mathematicsAdvisor Liu GuantingAbstract: The infinite series
8、 is an important part of mathematical analysis, and infinite series summation problem is a difficult part to master for students. However, infinite series summation has not a fixed method to follow. Combined with a concrete example, according to the different characteristics of the infinite series, we introduce several common methods and skills for infinite series in this paper .Keywords: Item series; Power series; Summation of Series专心-专注-专业