余弦定理导学案.doc

上传人:飞****2 文档编号:13758199 上传时间:2022-05-01 格式:DOC 页数:4 大小:255KB
返回 下载 相关 举报
余弦定理导学案.doc_第1页
第1页 / 共4页
余弦定理导学案.doc_第2页
第2页 / 共4页
点击查看更多>>
资源描述

《余弦定理导学案.doc》由会员分享,可在线阅读,更多相关《余弦定理导学案.doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上福建美佛儿学校自主型发展大课堂数学导学案班级 姓名 设计者 日期 课题: 1.1.2余弦定理 课时: 2课时 【教学目标】1知识与技能:掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题。2.过程与方法:利用向量的数量积推出余弦定理及其推论,并通过实践演算掌握运用余弦定理解决两类基本的解三角形问题,3情态与价值:培养学生在方程思想指导下处理解三角形问题的运算能力;通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一。【教学重、难点】重点:余弦定理的发现和证明过程及其基本应用;难点:勾股定理在

2、余弦定理的发现和证明过程中的作用。【教学过程】创设情景 C如图11-4,在ABC中,设BC=a,AC=b,AB=c,已知a,b和C,求边c b aA c B(图11-4)探索研究联系已经学过的知识和方法,可用什么途径来解决这个问题?用正弦定理试求,发现因A、B均未知,所以较难求边c。由于涉及边长问题,从而可以考虑用向量来研究这个问题。 A如图11-5,设,那么,则 C B 从而 (图11-5)同理可证 于是得到以下定理余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。即 思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由

3、三边求出一角?(由学生推出)从余弦定理,又可得到以下推论:理解定理余弦定理及其推论的基本作用为:已知三角形的任意两边及它们的夹角就可以求出第三边;已知三角形的三条边就可以求出其它角。思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?(由学生总结)若ABC中,C=,则,这时由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例。【典例分析】例1在ABC中,已知,求b及A解:=cos=求可以利用余弦定理,也可以利用正弦定理:解法一:cos解法二:sin又,即评述:解法二应注意确定A的取值范围。【变式训练1】1、在AB

4、C中,已知b=3,c=8,A=60,则a= 2、在ABC中,若,则A= 例2在ABC中,已知,解三角形(见课本第8页例4,可由学生通过阅读进行理解) 【变式训练2】在ABC中,a=2,b=,c=,则A= 例3. 在ABC中,=,=,且,是方程的两根,。(1) 求角C的度数;(2) 求的长;解:(1) (2)因为,是方程的两根,所以 评析:在余弦定理的应用中,注意与一元二次方程中韦达定理的应用。方程的根往往不必直接求出,要充分利用两根之和与两根之差的特点。【变式训练2】在ABC中,求。解: ,而所以 【当堂训练】1、边长为的三角形的最大角与最小角的和是( ) A B C D 2、 以4、5、6为

5、边长的三角形一定是( ) A. 锐角三角形B. 直角三角形 C. 钝角三角形D. 锐角或钝角三角形3、在中,已知满足= 4、在中,已知满足= 5、在中,则三角形为( ) A. 直角三角形B. 锐角三角形C. 等腰三角形D. 等边三角形【能力提升】1、在中,角A、B、C的对边分别为、,若,则角B的值为( )A. B. C.或D. 或2、如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为( )A. B. C. D. 3、在ABC中,若,则最大角的余弦值是( )A B C D 4、在中,已知求三边的长5、设的取值范围是多少?【课堂小结】(1)余弦定理是任何三角形边角之间存在的共同规律,勾股定理是余弦定理的特例;(2)余弦定理的应用范围:已知三边求三角;已知两边及它们的夹角,求第三边。专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁