《2019年高考数学考纲解读与热点难点突破专题19概率与统计教学案文(共12页).docx》由会员分享,可在线阅读,更多相关《2019年高考数学考纲解读与热点难点突破专题19概率与统计教学案文(共12页).docx(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上概率与统计【2019年高考考纲解读】1.高考中主要利用计数原理求解排列数、涂色、抽样问题,以小题形式考查.2.二项式定理主要考查通项公式、二项式系数等知识,近几年也与函数、不等式、数列交汇,值得关注3.以选择题、填空题的形式考查古典概型、几何概型的基本应用.4.将古典概型与概率的性质相结合,考查知识的综合应用能力5.以选择题、填空题的形式考查随机抽样、样本的数字特征、统计图表、回归方程、独立性检验等.6.在概率与统计的交汇处命题,以解答题中档难度出现【重点、考点剖析】一、排列组合与计数原理的应用1分类加法计数原理和分步乘法计数原理如果每种方法都能将规定的事件完成,则要
2、用分类加法计数原理将方法种数相加;如果需要通过若干步才能将规定的事件完成,则要用分步乘法计数原理将各步的方法种数相乘2.名称排列组合相同点都是从n个不同元素中取m(mn)个元素,元素无重复不同点排列与顺序有关;两个排列相同,当且仅当这两个排列的元素及其排列顺序完全相同组合与顺序无关;两个组合相同,当且仅当这两个组合的元素完全相同二、二项式定理1通项与二项式系数Tr1Canrbr,其中C(r0,1,2,n)叫做二项式系数2各二项式系数之和(1)CCCC2n.(2)CCCC2n1.三、古典概型与几何概型1古典概型的概率公式P(A).2几何概型的概率公式P(A).四、相互独立事件和独立重复试验1条件
3、概率在A发生的条件下B发生的概率:P(B|A). 2相互独立事件同时发生的概率P(AB)P(A)P(B)3独立重复试验、二项分布如果事件A在一次试验中发生的概率是p,那么它在n次独立重复试验中恰好发生k次的概率为Pn(k)Cpk(1p)nk,k0,1,2,n.五、离散型随机变量的分布列、均值与方差1均值与方差的性质(1)E(aXb)aE(X)b;(2)D(aXb)a2D(X)(a,b为实数)2两点分布与二项分布的均值、方差(1)若X服从两点分布,则E(X)p,D(X)p(1p);(2)若XB(n,p),则E(X)np,D(X)np(1p)【题型示例】题型一排列组合与计数原理例1、(1)2018
4、全国卷从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_种(用数字填写答案)(2)2018浙江卷从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成_个没有重复数字的四位数(用数字作答)【解析】不含有0的四位数有720(个)含有0的四位数有540(个) 综上,四位数的个数为7205401 260.【答案】1 260【方法技巧】解排列、组合的应用题,通常有以下途径: (1)以元素为主体,即先满足特殊元素的要求,再考虑其他元素 (2)以位置为主体,即先满足特殊位置的要求,再考虑其他位置(3)先不考虑附加条件,计算出排列或组合数,再减去不符
5、合要求的排列或组合数.【变式探究】(2017全国)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有_种 站邀请,决定对甲、乙、丙、丁这四个景区进行体验式旅游,若不能最先去甲景区旅游,不能最后去乙景区和丁景区旅游,则小李可选的旅游路线数为()A24B18C16 D10解析:分两种情况,第一种:最后体验甲景区,则有A种可选的路线;第二种:不在最后体验甲景区,则有CA种可选的路线所以小李可选的旅游路线数为ACA10.选D.答案:D【变式探究】某校毕业典礼上有6个节目,考虑整体效果,对节目演出顺序有如下要求:节目甲必须排在前三位,且节目丙、丁必须排在一起则该校毕业
6、典礼节目演出顺序的编排方案共有()A120种 B156种C188种 D240种解析:解法一记演出顺序为16号,对丙、丁的排序进行分类,丙、丁占1和2号,2和3号,3和4号,4和5号,5和6号,其排法种数分别为AA,AA,CAA,CAA,CAA,故总编排方案有AAAACAACAACAA120(种)解法二记演出顺序为16号,按甲的编排进行分类,当甲在1号位置时,丙、丁相邻的情况有4种,则有CAA48(种);当甲在2号位置时,丙、丁相邻的情况有3种,共有CAA36(种);当甲在3号位置时,丙、丁相邻的情况有3种,共有CAA36(种)所以编排方案共有483636120(种)答案:A【变式探究】中国古代
7、中的“礼、乐、射、御、书、数”合称“六艺”“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“数”必须排在前三节,且“射”和“御”两门课程相邻排课,则“六艺”课程讲座不同的排课顺序共有()A120种 B156种C188种 D240种(2)若自然数n使得作竖式加法n(n1)(n2)均不产生进位现象,则称n为“开心数”例如:32是“开心数”因为323334不产生进位现象;23不是“开心数”,因为232425产生进位现象,那么,小于100的“开心数”
8、的个数为()A9 B10 C11 D12答案D解析根据题意个位数需要满足要求:n(n1)(n2)10,即n2.3,个位数可取0,1,2三个数,十位数需要满足:3n10,nD4D2D5D3D6.【方法技巧】解答离散型随机变量的分布列及相关问题的一般思路:(1)明确随机变量可能取哪些值(2)结合事件特点选取恰当的计算方法,并计算这些可能取值的概率值(3)根据分布列和期望、方差公式求解.【变式探究】(2017全国)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完根据往年销售经验,每天需求量与当天最高气温(单位:)有关如果
9、最高气温不低于25,需求量为500瓶;如果最高气温位于区间20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得到下面的频数分布表:最高气温10,15)15,20)20,25)25,30)30,35)35,40)天数216362574以最高气温位于各区间的频率代替最高气温位于该区间的概率(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的期望达到最大值?解(1)由题意知,X所有的可能取值为200,3
10、00,500,由表格数据知,P(X200)0.2,P(X300)0.4,P(X500)0.4.则X的分布列为X200300500P0.20.40.4 (2)由题意知,这种酸奶一天的需求量至多为500,至少为200,因此只需考虑200n500. 当300n500时,若最高气温不低于25,则Y6n4n2n;若最高气温位于区间20,25),则Y63002(n300)4n1 2002n;若最高气温低于20,则Y62002(n200)4n8002n,因此E(Y)2n0.4(1 2002n)0.4(8002n)0.26400.4n.当200n300时,若最高气温不低于20,则Y6n4n2n;若最高气温低于
11、20,则Y62002(n200)4n8002n,因此E(Y)2n(0.40.4)(8002n)0.21601.2n.所以当n300时,Y的期望达到最大值,最大值为520元【变式探究】某产品按行业生产标准分成8个等级,等级系数X依次为1,2,8,其中X5为标准A,X3为标准B,已知甲厂执行标准A生产该产品,产品的零售价为6元/件;乙厂执行标准B生产该产品,产品的零售价为4元/件假定甲、乙两厂的产品都符合相应的执行标准(1)已知甲厂产品的等级系数X1的概率分布列如下表所示:X15678P0.4ab0.1且X1的数学期望EX16,求a,b的值;(2)为分析乙厂产品的等级系数X2,从该厂生产的产品中随
12、机抽取30件,相应的等级系数组成一个样本,数据如下:353385563463475348538343447567用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X2的数学期望;(3)在(1),(2)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由注:产品的“性价比”产品的等级系数的数学期望/产品的零售价;“性价比”大的产品更具可购买性(3)乙厂的产品更具可购买性,理由如下:甲厂产品的等级系数的数学期望等于6,价格为6元/件,其性价比为1,乙厂产品的等级系数的数学期望等于4.8,价格为4元/件,其性价比为1.2,又1.21,乙厂的产品更具可购买性专心-专注-专业