《集合的基本关系及运算(共14页).doc》由会员分享,可在线阅读,更多相关《集合的基本关系及运算(共14页).doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上集合的基本关系及运算编稿:丁会敏 审稿:王静伟 【学习目标】1.理解集合之间包含与相等的含义,能识别一些给定集合的子集在具体情境中,了解空集和全集的含义2.理解两个集合的交集和并集的含义,会求两个简单集合的交集与并集理解在给定集合中一个子集的补集的含义,会求给定子集的补集【要点梳理】要点一、集合之间的关系1.集合与集合之间的“包含”关系集合A是集合B的部分元素构成的集合,我们说集合B包含集合A;子集:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集(subset).记作:,当集合A不包含于集合B时,记作AB,用Venn图表示
2、两个集合间的“包含”关系:要点诠释:(1)“是的子集”的含义是:的任何一个元素都是的元素,即由任意的,能推出(2)当不是的子集时,我们记作“(或)”,读作:“不包含于”(或“不包含”)真子集:若集合,存在元素xB且,则称集合A是集合B的真子集(proper subset).记作:AB(或BA)规定:空集是任何集合的子集,是任何非空集合的真子集.2.集合与集合之间的“相等”关系,则A与B中的元素是一样的,因此A=B要点诠释:任何一个集合是它本身的子集,记作要点二、集合的运算1.并集一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集,记作:AB读作:“A并B”,即:AB=
3、x|xA,或xBVenn图表示:要点诠释:(1)“xA,或xB”包含三种情况:“”;“”;“”(2)两个集合求并集,结果还是一个集合,是由集合A与B的所有元素组成的集合(重复元素只出现一次).2.交集一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集;记作:AB,读作:“A交B”,即AB=x|xA,且xB;交集的Venn图表示:要点诠释:(1)并不是任何两个集合都有公共元素,当集合A与B没有公共元素时,不能说A与B没有交集,而是(2)概念中的“所有”两字的含义是,不仅“AB中的任意元素都是A与B的公共元素”,同时“A与B的公共元素都属于AB”(3)两个集合求交集,结果还是
4、一个集合,是由集合A与B的所有公共元素组成的集合.3.补集全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集,通常记作U.补集:对于全集U的一个子集A,由全集U中所有不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集(complementary set),简称为集合A的补集,记作:补集的Venn图表示:要点诠释:(1)理解补集概念时,应注意补集是对给定的集合和相对而言的一个概念,一个确定的集合,对于不同的集合U,补集不同(2)全集是相对于研究的问题而言的,如我们只在整数范围内研究问题,则为全集;而当问题扩展到实数集时,则为全集,这时就不是全集(3)
5、表示U为全集时的补集,如果全集换成其他集合(如)时,则记号中“U”也必须换成相应的集合(即)4.集合基本运算的一些结论若AB=A,则,反之也成立若AB=B,则,反之也成立若x(AB),则xA且xB若x(AB),则xA,或xB求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法.【典型例题】类型一、集合间的关系例1. 集合,集合,那么间的关系是( ). A. B. C. = D.以上都不对 【答案】B【解析】先用列举法
6、表示集合、,再判断它们之间的关系.由题意可知,集合是非负偶数集,即.集合中的元素.而(为正奇数时)表示0或正偶数,但不是表示所有的正偶数,即.由依次得0,2,6,12,即.综上知,应选. 【总结升华】判断两个集合间的关系的关键在于:弄清两个集合的元素的构成,也就是弄清楚集合是由哪些元素组成的.这就需要把较为抽象的集合具体化(如用列举法来表示集合)、形象化(用Venn图,或数形集合表示).举一反三:【变式1】若集合,则( ).A. B. C. = D. 【答案】C例2. 写出集合a,b,c的所有不同的子集.【解析】不含任何元素子集为,只含1个元素的子集为a,b,c,含有2个元素的子集有a,b,a
7、,c,b,c,含有3个元素的子集为a,b,c,即含有3个元素的集合共有23=8个不同的子集.如果集合增加第4个元素d,则以上8个子集仍是新集合的子集,再将第4个元素d放入这8个子集中,会得到新的8个子集,即含有4个元素的集合共有24=16个不同子集,由此可推测,含有n个元素的集合共有2n个不同的子集.【总结升华】要写出一个集合的所有子集,我们可以按子集的元素个数的多少来分别写出.当元素个数相同时,应依次将每个元素考虑完后,再写剩下的子集.如本例中要写出2个元素的子集时,先从a起,a与每个元素搭配有a,b,a,c,然后不看a,再看b可与哪些元素搭配即可.同时还要注意两个特殊的子集:和它本身.举一
8、反三:【变式1】已知,则这样的集合有 个.【答案】7个【变式2】同时满足:;,则的非空集合有( )A. 16个 B. 15个 C. 7个 D. 6个【答案】C 【解析】时,;时,;时,;时,;时,;非空集合可能是:,共7个.故选C.例3集合A=x|y=x2+1,B=y|y=x2+1,C=(x,y)|y=x2+1,D=y=x2+1是否表示同一集合?【答案】以上四个集合都不相同【解析】集合A=x|y=x2+1的代表元素为x,故集合A表示的是函数y=x2+1中自变量x的取值范围,即函数的定义域A=;集合B=y|y=x2+1的代表元素为y,故集合B表示的是函数y=x2+1中函数值y的取值范围,即函数的
9、值域B=;集合C=(x,y)|y=x2+1的代表元素为点(x,y),故集合C表示的是抛物线y=x2+1上的所有点组成的集合;集合D=y=x2+1是用列举法表示的集合,该集合中只有一个元素:方程y=x2+1【总结升华】认清集合的属性,是突破此类题的关键.首先应当弄清楚集合的表示方法,是列举法还是描述法;其次对于用描述法表示的集合一定要认准代表元素,准确理解对代表元素的限制条件举一反三:【变式1】 设集合,则( )A. B. C. D. 【答案】D【解析】排除法:集合M、N都是点集,因此只能是点集,而选项A表示二元数集合,选项B表示二元等式集合,选项C表示区间(无穷数集合)或单独的一个点的坐标(不
10、是集合),因此可以判断选D【变式2】 设集合,则与的关系是( )A. B. C. D. 【答案】A【解析】集合M表示函数的定义域,有;集合N表示函数的值域,有,故选A.【高清课堂:集合的概念、表示及关系 例2】【变式3】 设M=x|x=a2+1,aN+,N=x|x=b2-4b+5,bN+,则M与N满足( )A. M=N B. MN C. NM D. MN=【答案】B【解析】 当aN+时,元素x=a2+1,表示正整数的平方加1对应的整数,而当bN+时,元素x=b2-4b+5=(b-2)2+1,其中b-2可以是0,所以集合N中元素是自然数的平方加1对应的整数,即M中元素都在N中,但N中至少有一个元
11、素x=1不在M中,即MN,故选B.【高清课堂:集合的概念、表示及关系 例3】例4已知若M=N,则= A200 B200 C100 D0【思路点拨】解答本题应从集合元素的三大特征入手,本题应侧重考虑集合中元素的互异性【答案】D【解析】由M=N,知M,N所含元素相同.由O0,|x|,y可知若x=0,则xy=0,即x与xy是相同元素,破坏了M中元素互异性,所以x0.若xy=0,则x=0或y=0,其中x=0以上讨论不成立,所以y=0,即N中元素0,y是相同元素,破坏了N中元素的互异性,故xy0若,则x=y,M,N可写为M=x,x2,0,N=0,|x|,x由M=N可知必有x2=|x|,即|x|2=|x|
12、x|=0或|x|=1若|x|=0即x=0,以上讨论知不成立若|x|=1即x=1当x=1时,M中元素|x|与x相同,破坏了M中元素互异性,故 x1当x=-1时,M=-1,1,0,N=0,1,-1符合题意,综上可知,x=y=-1=-2+2-2+2+2=0【总结升华】解答本题易忽视集合的元素具有的“互异性”这一特征,而找不到题目的突破口因此,集合元素的特征是分析解决某些集合问题的切入点举一反三:【变式1】设a,bR,集合,则b-a=( )【答案】2【解析】由元素的三要素及两集合相等的特征:当b=1时,a=-1,当时,b=a且a+b=0,a=b=0(舍)综上:a=-1,b=1,b-a=2.类型二、集合
13、的运算例5. 设集合,求.【答案】,【解析】先将集合、转化为文字语言叙述,以便弄清楚它们的构成,再求其交集即可.集合表示3的倍数所组成的集合;集合表示除以3余1的整数所组成的集合;集合表示除以3余2的整数所组成的集合;集合表示除以6余1的整数所组成的集合;,.【总结升华】求两个集合的交集或并集,关键在于弄清两个集合由哪些元素所构成的,因而有时需要对集合进行转化,或具体化、形象化.如本例中转化为用自然语言来描述这些集合,有利于弄清集合的元素的构成.类似地,若一个集合元素的特征由不等式给出时,利用数轴就能使问题直观形象起来.举一反三:【变式1】已知集合M=y|y=x2-4x+3,xR,N=y|y=
14、-x2-2x+8,xR,则MN等于( )A. B. R C. -1,9 D. -1,9【答案】D【解析】集合M、N均表示构成相关函数的因变量取值范围,故可知:M=y|y-1,N=y|y9,所以MN=y|-1y9,选D.例6. 设集合M=3,a,N=x|x2-2x0,xZ,MN=1,则MN为( )A. 1,3,a B. 1,2,3,a C. 1,2,3 D. 1,3【思路点拨】先把集合N化简,然后再利用集合中元素的互异性解题【答案】D【解析】由N=x|x2-2x0,xZ可得:N=x|0xa.(1)若AB,求实数 a的取值范围;(2)若ABA,求实数a的取值范围;(3)若AB且ABA,求实数a的取
15、值范围【思路点拨】(1)画数轴;(2)注意是否包含端点.【答案】(1)a4;(2)a-2;(3)-2aa,又AB,如图,a4;(2)画数轴同理可得:a-2;(3)画数轴同理可得:如图,-2a4.【总结升华】此问题从题面上看是集合的运算,但其本质是一个定区间,和一个动区间的问题.思路是,使动区间沿定区间滑动,数形结合解决问题.举一反三:【变式1】已知集合P=xx21,M=a.若PM=P,则a的取值范围是( )A(-, -1 B1, +) C-1,1 D(-,-1 1,+) 【答案】C 【解析】又 , , 故选C例9. 设集合.(1)若,求的值;(2)若,求的值.【思路点拨】明确、的含义,根据问题
16、的需要,将其转化为等价的关系式和,是解决本题的关键.同时,在包含关系式中,不要漏掉的情况.【答案】(1)或;(1)2【解析】首先化简集合,得.(1)由,则有,可知集合为,或为、,或为.若时,解得.若,代入得.当时,符合题意;当时,也符合题意.若,代入得,解得或.当时,已讨论,符合题意;当时,不符合题意.由,得或.(2).又,而至多只有两个根,因此应有,由(1)知.【总结升华】两个等价转化:非常重要,注意应用.另外,在解决有条件的集合问题时,不要忽视的情况.举一反三:【变式1】已知集合,若,求实数的取值范围.【答案】或【解析】,.当时,此时方程无解,由,解得或.当时,此时方程有且仅有一个实数解-
17、2,且,解得.综上,实数的取值范围是或.【变式2】设全集,集合,若CuA,求实数的取值范围.【答案】【解析】 CuA=,. CuA,即.实数的取值范围是.【巩固练习】1设,则( ) A B C D2已知全集,则正确表示集合和关系的韦恩(Venn)图是 ( ) 3若集合,且,则的值为( )A1 B-1 C1或-1 D1或-1或04已知集合满足,那么下列各式中一定成立的是( )A AB B BA C D 5若全集,则集合的真子集共有( )A3个 B5个 C7个 D8个6设集合,则( )A B C D7用适当的符号填空:(1) ;(2) ;(3) .8. 若集合,则的非空子集的个数为 .9若集合,则
18、_10设集合,且,则实数的取值范围是 .11已知,则_.12已知集合,若,请写出满足上述条件得集合.13已知,求的取值范围.14已知集合,且,求实数的值15设全集,.【巩固练习】11. 设A=(x, y)| |x+1|+(y-2)2=0,B=-1, 2,则必有( )A、 B、 C、A=B D、AB=2. 集合M=y| y=x2-1, xR, N=x| y=,则MN等于( ) A、(-, 1), (, 1) B、 C、 D、3已知全集,则正确表示集合和关系的韦恩(Venn)图是 ( ) 4已知集合满足,那么下列各式中一定成立的是( )A AB B BA C D 5若集合,且,则的值为( )A1 B-1 C1或-1 D1或-1或06设集合,则( )A B C D7设,则.8某班有学生55人,其中体育爱好者43人,音乐爱好者34人,还有4人既不爱好体育也不爱好音乐,则该班既爱好体育又爱好音乐的人数为 人.9若且,则 .10若,则= .11设全集,集合,那么等于_.12设集合,都是的含两个元素的子集,且满足:对任意的,(),都有(表示两个数中的较小者)则的最大值是 .13设,其中,如果,求实数的取值范围.14设,集合,;若,求的值.15设,集合.满足以下两个条件:(1)(2)集合中的所有元素的和为124,其中.求的值.专心-专注-专业