《选修2-2-导数及其应用单元检测(共7页).doc》由会员分享,可在线阅读,更多相关《选修2-2-导数及其应用单元检测(共7页).doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上导数及其应用一、选择题(本大题共12小题,每小题5分,共60分)1.已知函数yf(x)的图象如图,则f(xA)与f(xB)的大小关系是()Af(xA)f(xB) Bf(xA)0,函数f(x)x3ax在1,)上是单调减函数,则a的最大值为()A1 B2 C3 D48若函数f(x)asin xcos x在x处有最值,那么a等于()A. B C. D9已知 f(x)dx3,则f(x)6dx等于()A9 B12 C15 D1810设aR,若函数yeax3x,xR有大于零的极值点,则()Aa3 Ba Da0),贷款的利率为4.8%,假设银行吸收的存款能全部放贷出去若存款利率为x
2、 (x(0,0.048),则存款利率为多少时,银行可获得最大利益()A0.012 B0.024 C0.032 D0.036二、填空题(本大题共4小题,每小题5分,共20分)13若f(x)x2bln(x2)在(1,)上是减函数,则b的取值范围是_14设函数f(x)ax33x1 (xR),若对于x1,1,都有f(x)0,则实数a的值为_15.如图,内接于抛物线y1x2的矩形ABCD,其中A、B在抛物线上运动,C、D在x轴上运动,则此矩形的面积的最大值是_16已知函数f(x)x3ax2bxc,x2,2表示过原点的曲线,且在x1处的切线的倾斜角均为,有以下命题:f(x)的解析式为f(x)x34x,x2
3、,2 f(x)的极值点有且只有一个f(x)的最大值与最小值之和等于零 其中正确命题的序号为_三、解答题(本大题共6小题,共70分)17(10分)若函数f(x)x3ax2(a1)x1在区间(1,4)上为减函数,在区间(6,)上为增函数,试求实数a的取值范围18(12分)已知函数f(x)x3ax2bxc在x与x1时都取得极值(1)求a,b的值与函数f(x)的单调区间;(2)若对x1,2,不等式f(x)ln 21且x0时,exx22ax1.22(12分)已知函数f(x)x2ln x.(1)求函数f(x)在1,e上的最大值和最小值;(2)求证:当x(1,)时,函数f(x)的图象在g(x)x3x2的下方
4、答案1Bf(xA)和f(xB)分别表示函数图象在点A、B处的切线斜率,故f(xA)0,a0, 0eax1,01, a0,又x1,f(x)的单调增区间为(,1),(1,)12B由题意知,存款量g(x)kx (k0),银行应支付的利息h(x)xg(x)kx2,x(0,0.048)设银行可获得收益为y,则y0.048kxkx2.于是y0.048k2kx,令y0,解得x0.024,依题意知y在x0.024处取得最大值故当存款利率为0.024时,银行可获得最大利益13(,1解析f(x)x,又f(x)在(1,)上是减函数,即f(x)0在(1,)上恒成立,又x20,故x22xb0在(1,)上恒成立,即x22
5、xb0在(1,)上恒成立又函数yx22xb的对称轴为x1,故要满足条件只需(1)22(1)b0,即b1.144解析若x0,则不论a取何值,f(x)0,显然成立;当x0,即x(0,1时,f(x)ax33x10 可转化为a,设g(x),则g(x),所以g(x)在区间上单调递增,在区间上单调递减,因此g(x)maxg4,从而a4;当x0,f(x)是递增的,x时,f(x)0,ax1. 又x1(7,),a7,同时成立,5a7.经检验a5或a7都符合题意, 所求a的取值范围为5a7.18解(1)f(x)x3ax2bxc, f(x)3x22axb,由fab0, f(1)32ab0得a,b2.f(x)3x2x
6、2(3x2)(x1),令f(x)0,得x1, 令f(x)0,得x1.所以函数f(x)的递增区间是和(1,),递减区间是.(2)f(x)x3x22xc,x1,2,由(1)知,当x时,fc为极大值,而f(2)2c,则f(2)2c为最大值,要使f(x)f(2)2c,得c2.19.解如图所示,设BC为海岸线,A为渔艇停泊处,C为海岸渔站,D为海岸上一点AB9,AC3, BC15.设由A到C所需时间为t,CD的长为x, 则tx (0x15),t令t0,解得x3,x27(舍)在x3附近,t由负到正,因此在x3处取得极小值又t(0),t(15),t(3),比较可知t(3)最小在距渔站3 km处登岸可使抵达渔
7、站的时间最短20解设每次订购电脑的台数为x,则开始库存量为x台,经过一个周期的正常均匀销售后,库存量变为零,这样又开始下一次的订购,因此平均库存量为x台,所以每年的保管费用为x4 00010%元,而每年的订货电脑的其它费用为1 600元,这样每年的总费用为1 600x4 00010%元令y1 600x4 00010%, y5 0001 6004 00010%.令y0,解得x200(台)也就是当x200台时,每年订购电脑的其它费用及保管费用总费用达到最小值,最小值为80 000元21(1)解由f(x)ex2x2a,xR知f(x)ex2,xR.令f(x)0,得xln 2.于是当x变化时,f(x),
8、f(x)的变化情况如下表:x(,ln 2)ln 2(ln 2,)f(x)0f(x)2(1ln 2a)故f(x)的单调递减区间是(,ln 2),单调递增区间是(ln 2,),f(x)在xln 2处取得极小值,极小值为f(ln 2)eln 22ln 22a2(1ln 2a)(2)证明设g(x)exx22ax1,xR, 于是g(x)ex2x2a,xR.由(1)知当aln 21时,g(x)取最小值为g(ln 2)2(1ln 2a)0.于是对任意xR,都有g(x)0,所以g(x)在R内单调递增于是当aln 21时,对任意x(0,),都有g(x)g(0)而g(0)0,从而对任意x(0,),都有g(x)0,即exx22ax10,故exx22ax1.22(1)解f(x)x2ln x,f(x)2x.x1时,f(x)0,f(x)在1,e上是增函数,f(x)的最小值是f(1)1,最大值是f(e)1e2.(2)证明令F(x)f(x)g(x)x2x3ln x,F(x)x2x2.x1,F(x)0,F(x)在(1,)上是减函数,F(x)F(1)0.f(x)g(x)当x(1,)时,函数f(x)的图象在g(x)x3x2的下方专心-专注-专业