《坐标系与参数方程(知识总结)(共5页).doc》由会员分享,可在线阅读,更多相关《坐标系与参数方程(知识总结)(共5页).doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上坐标系与参数方程【要点知识】一、坐标系1.平面直角坐标系中的伸缩变换设点是平面直角坐标系中的任意一点,在变换的作用下,点对应到点,我们把称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系(1)极坐标系的概念如图所示,在平面内取一个定点,叫做极点;自极点引一条射线,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样我们就建立了一个极坐标系.(2)极坐标设点是平面内一点,极点与点的距离叫做点的极径,记为;以极轴为始边,射线为终边的叫做点的极角,记为. 我们把有序数对叫做点的极坐标,记为.(3)极径、极角的取值范围一般地
2、,极径,极角.3.极坐标与直角坐标之间的互化如图所示,设点是平面内任意一点,记点的直角坐标为,极坐标为. 我们可以得到极坐标与直角坐标之间如下关系:()直角坐标化极坐标:,;()极坐标化直角坐标:,().【注】上面两类关系式是我们进行极坐标与直角坐标互化的重要关系式. 解题时,大家要根据题意灵活选用.4.几个简单曲线的极坐标方程(1)圆的极坐标方程:圆心在(),半径为的圆的极坐标方程为;(2)直线的极坐标方程:经过极点,从极轴到直线的角是的直线的极坐标方程为和.5.柱坐标系与球坐标系(1)柱坐标系如图所示,建立空间直角坐标系,设点是空间中任意一点,它在平面上的射影为点,用(,)表示点在平面上的
3、极坐标,这时点的位置可用有序数组()表示. 我们把建立上述对应关系的坐标系叫做柱坐标系;相应地,把有序数组叫做点的柱坐标,记作,其中,.【注】直角坐标与柱坐标互化的变换公式:(2)球坐标系如图所示,建立空间直角坐标系,设点是空间中任意一点,连结,记,与轴正向所夹的角为,设点在平面上的射影为点,轴按逆时针方向旋转到时所转过的正角为,这样点的位置就可以用有序数组表示. 我们把建立上述对应关系的坐标系叫做球坐标系(或空间极坐标系);相应地,把有序数组叫做点的球坐标,记作,其中,.【注】直角坐标与球坐标互化的变换公式:二、参数方程1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标,
4、都是某个变数的函数,并且对于的每一个允许值,由方程组所确定的点都在这条曲线上,那么我们就把方程组叫做这条曲线的参数方程,而把联系变数,的变数叫做参变数,简称参数.2.参数方程与普通方程之间的互化曲线的参数方程与普通方程是曲线方程的两种不同形式. 一般地,可以通过消去参数,由参数方程得到普通方程;反之,如果已知变数,中的一个与参数的关系,例如,则我们可以通过把它代入普通方程,求出另一个变数与参数的关系,由此得到的方程组就是该曲线的参数方程.【注】在解决参数方程与普通方程互化的问题时,必须要使,的取值范围保持一致.3.几个简单曲线的参数方程(1)圆的参数方程:圆心在原点,半径为的圆的参数方程为(为参数);(2)椭圆的参数方程:中心在原点,焦点在轴上的椭圆的参数方程为(为参数);(3)双曲线的参数方程:中心在原点,焦点在轴上的双曲线的参数方程为(为参数),这里,是的正割函数,并且;(4)抛物线的参数方程:以原点为顶点,以轴为对称轴,开口向右的抛物线()(不包括原点)的参数方程为(为参数);(5)直线的参数方程:过点,倾斜角为()的直线的参数方程为(为参数);(6)渐开线的参数方程:(为参数);(7)摆线的参数方程:(为参数).专心-专注-专业