选修坐标系与参数方程知识点总结.doc

上传人:美****子 文档编号:58065708 上传时间:2022-11-06 格式:DOC 页数:8 大小:857.50KB
返回 下载 相关 举报
选修坐标系与参数方程知识点总结.doc_第1页
第1页 / 共8页
选修坐标系与参数方程知识点总结.doc_第2页
第2页 / 共8页
点击查看更多>>
资源描述

《选修坐标系与参数方程知识点总结.doc》由会员分享,可在线阅读,更多相关《选修坐标系与参数方程知识点总结.doc(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、坐标系与参数方程 知识点(一)坐标系1平面直角坐标系中的坐标伸缩变换设点是平面直角坐标系中的任意一点,在变换的作用下,点对应到点,称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.(1)极坐标系如下图,在平面内取一个定点,叫做极点,自极点引一条射线,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系那么不可.但极坐标系和平面直角坐标系都是平面坐标系.(2)极坐标设M是平面内一点,极点与点

2、M的距离|OM|叫做点M的极径,记为;以极轴为始边,射线为终边的角叫做点M的极角,记为.有序数对叫做点M的极坐标,记作.一般地,不作特殊说明时,我们认为可取任意实数.特别地,当点在极点时,它的极坐标为(0, )(R).和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定,那么除极点外,平面内的点可用唯一的极坐标表示;同时,极坐标表示的点也是唯一确定的.(1)互化背景:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取一样的长度单位,如下图:(2)互化公式:设是坐标平面内任意一点,它的直角坐标是,极坐标是(),于是极坐标与直角坐标的互化公式如表:点直角坐标极坐标互化公式在

3、一般情况下,由确定角时,可根据点所在的象限最小正角.曲线图形极坐标方程圆心在极点,半径为的圆圆心为,半径为的圆圆心为,半径为的圆圆心为,半径为的圆过极点,倾斜角为的直线(1)(2)过点,与极轴垂直的直线过点,与极轴平行的直线注:由于平面上点的极坐标的表示形式不唯一,即点可以表示为等多种形式,其中,只有的极坐标满足方程.1圆的极坐标方程MP00Ox假设圆的圆心为 ,半径为r,求圆的极坐标方程。设为圆上任意一点,由余弦定理,得PM2 = OM2 +OP2 2OMOPcosPOM,那么圆的极坐标方程是:2直线的极坐标方程xOP(,)M(0,0)l00假设直线l经过点,且极轴到此直线的角为 ,求直线l

4、的极坐标方程。设直线l上任意一点的坐标为P(,),由正弦定理,得: = 整理得直线l的极坐标方程为 6、圆相对于极坐标系的几种不同的位置方程的形式分别为: 6、直线相对于极坐标系的几种不同的位置方程的形式分别为: 二、参数方程一般地,在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数的函数,并且对于的每一个允许值,由方程组所确定的点都在这条曲线上,那么方程就叫做这条曲线的参数方程,联系变数的变数叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.(2)如果知

5、道变数中的一个与参数的关系,例如,把它代入普通方程,求出另一个变数与参数的关系,那么就是曲线的参数方程,在参数方程与普通方程的互化中,必须使的取值范围保持一致.注:普通方程化为参数方程,参数方程的形式不一定唯一。应用参数方程解轨迹问题,关键在于适当地设参数,如果选用的参数不同,那么所求得的曲线的参数方程的形式也不同。3圆的参数如下图,设圆的半径为,点从初始位置出发,按逆时针方向在圆上作匀速圆周运动,设,那么。这就是圆心在原点,半径为的圆的参数方程,其中的几何意义是转过的角度。圆心为,半径为的圆的普通方程是,它的参数方程为:。4椭圆的参数方程以坐标原点为中心,焦点在轴上的椭圆的标准方程为其参数方

6、程为,其中参数称为离心角;焦点在轴上的椭圆的标准方程是其参数方程为 其中参数仍为离心角,通常规定参数的范围为0,2。注:椭圆的参数方程中,参数的几何意义为椭圆上任一点的离心角,要把它和这一点的旋转角区分开来,除了在四个顶点处,离心角和旋转角数值可相等外即在到的范围内,在其他任何一点,两个角的数值都不相等。但当时,相应地也有,在其他象限内类似。5双曲线的参数方程以坐标原点为中心,焦点在轴上的双曲线的标准议程为其参数方程为,其中焦点在轴上的双曲线的标准方程是其参数方程为以上参数都是双曲线上任意一点的离心角。6抛物线的参数方程以坐标原点为顶点,开口向右的抛物线的参数方程为7直线的参数方程经过点,倾斜

7、角为的直线的普通方程是而过,倾斜角为的直线的参数方程为。注:直线参数方程中参数的几何意义:过定点,倾斜角为的直线的参数方程为,其中表示直线上以定点为起点,任一点为终点的有向线段的数量,当点在上方时,0;当点在下方时,0;当点与重合时,=0。我们也可以把参数理解为以为原点,直线向上的方向为正方向的数轴上的点的坐标,其单位长度与原直角坐标系中的单位长度一样。其中参数t是以定点Px0,y0为起点,对应于t点Mx,y为终点的有向线段PM的数量,又称为点P与点M间的有向距离根据t的几何意义,有以下结论设A、B是直线上任意两点,它们对应的参数分别为tA和tB,那么线段AB的中点所对应的参数值等于三例题鉴赏

8、例12021湖北(23)(本小题总分值10分)选修44:坐标系与参数方程 在直角坐标中,圆,圆。 ()在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆的极坐标方程,并求出圆的交点坐标(用极坐标表示); ()求出的公共弦的参数方程。例2坐标系与参数方程直线与圆相交的弦长为 解析:化极坐标为直角坐标得直线例3陕西文17直角坐标系中,以原点O为极点,轴的正半轴为极轴建立极坐标系,设点A,B分别在曲线:为参数和曲线:上,那么的最小值为 1 【分析】利用化归思想和数形结合法,把两条曲线转化为直角坐标系下的方程【解】曲线的方程是,曲线的方程是,两圆外离,所以的最小值为例4浙江理科直线,为参数,为的倾斜角,且与曲线 为参数相交于A、B两点,点的坐标为 1求的周长; 2假设点恰为线段的三等分点,求的面积。 解:1将曲线C消去可得:,直线过曲线C的左焦点, 由椭圆的定义可知为 2可设直线的方程为,假设点为线段的三等分点,不妨设 ,那么 联立,消去得: 那么,消去得: 此时 所以

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 文案大全

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁