小学四年级奥数—-逻辑推理(共3页).doc

上传人:飞****2 文档编号:13521096 上传时间:2022-04-29 格式:DOC 页数:3 大小:32KB
返回 下载 相关 举报
小学四年级奥数—-逻辑推理(共3页).doc_第1页
第1页 / 共3页
小学四年级奥数—-逻辑推理(共3页).doc_第2页
第2页 / 共3页
点击查看更多>>
资源描述

《小学四年级奥数—-逻辑推理(共3页).doc》由会员分享,可在线阅读,更多相关《小学四年级奥数—-逻辑推理(共3页).doc(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上小学四年级数学 逻辑推理 (例题详解)例1 对某班同学进行了调查,知道如下情况:有哥哥的人没有姐姐;没有哥哥的人有弟弟;有弟弟的人有妹妹。试问:(1)有姐姐的人一定没有哥哥,对吗?(2)有弟弟的人一定没有哥哥,对吗?(3)没有哥哥的人一定有妹妹,对吗?解答:根据条件得到(1)是对的;“有弟弟且有哥哥”并不与矛盾,因此得到(2)是不对的; 根据条件得到(3)是对的;例2 有甲、乙、丙、丁四人同住在一座四层的楼房里,他们之中有工程师、工人、教师和医生.如果已知:甲比乙住的楼层高,比丙住的楼层低,丁住第四层;医生住在教师的楼上,在工人的楼下,工程师住最低层。试问:甲、乙、丙

2、、丁各住在这座楼的几层?各自的职业是什么?解答 (1)由已知条件,丁住在第四层,是最高层,于是甲、乙、丙只能住在1,2,3这三层之中了.因为条件还告诉我们,“甲比乙住的高”比“丙住的低”,所以甲肯定住在第二层,而丙住在第三层,乙住在第一层. (2)由条件知道,工程师住在最低层,说明工程师是住在一层.那么,医生、教师、工人一定住在2,3,4层,条件还告诉我们,“医生住在教师的楼上”.这说明医生不是住三层就是住四层,又由于“医生住在工人的楼下,”所以医生只能住在三层.工人住在四层,教师住在二层了. 我们把(1)与(2)联系起来,就得到最后的答案: 甲:教师,住二层; 乙:工程师,住一层; 丙:医生

3、,住三层; 丁:工人,住四层.例3 徐、王、陈、赵四位师傅分别是工厂的木工、车工、电工和钳工,他们都是象棋迷。(1)木工只和车工下棋,而且总是输给车工(2)王、陈两位是邻居;(3)陈师傅与电工下棋互有胜负;(4)徐师傅比赵师师傅下得好;(5)木工的家离工厂最远。问:徐、王、陈、赵四位师傅各是什么工种?解答 徐是车工、王是电工、陈是钳工、赵是木工。木工车工电工钳工徐王陈赵分析:由(3)知道陈不是电工,由(2)和(5)知道王、陈不是木工,由(1)和(4)知道徐是车工,赵是木工,最后可知陈是钳工,王是电工。例4:卢刚、丁飞和陈瑜,一位是工程师,一位是医生,一位是飞行员。现在只知道:卢刚和医生不同岁;

4、医生比丁飞年龄小,陈瑜比飞行员年龄大。问:谁是工程师、谁是医生、谁是飞行员?解析:因为卢刚和医生不同岁,医生比丁飞年龄小,可以判断卢刚和丁飞不是医生,所以陈瑜是医生。陈瑜比丁飞小,陈瑜比飞行员年龄大,所以丁飞是工程师,卢刚是飞行员。例5:有一个正方体,每个面分别写上汉字:数学奥林匹克。三个人从不同角度观察的结果如下图所示。这个正方体的每个汉字的对面各是什么字?解析:先找出出现次数最多的字奥 数 林“奥”的对面不是:林、匹、数、学。所以是“克”“数”的对面不是:学、奥、克、林。所以是“匹”“林”的对面是“学”例6 有三个小朋友们在谈论谁做的好事多。冬冬说:“兰兰做的比静静多。”兰兰说:“冬冬做的

5、比静静多。”静静说:“兰兰做的比冬冬少。”这三位小朋友中,谁做的好事最多?谁做的好事最少?解答:我们用“”来表示每个小朋友之间做好事多少的关系。兰兰静静 冬冬静静 冬冬兰兰所以,冬冬兰兰静静,冬冬做的好事最多,静静做的最少。例7 甲、乙、丙三个孩子踢球打碎了玻璃,甲说:“是丙打碎的。”乙说:“我没有打碎破璃。”丙说:“是乙打碎的。”他们当中有一个人说了谎话,到底是谁打碎了玻璃?解答:由题意推出结论,必须符合他们中只有一个人说了谎,推理时可先假设,看结论和条件是否矛盾。如果是甲打碎的,那么甲说谎话,乙说的是真话,丙说的是谎话。这样两人说的是谎话,与他们中只有一人说谎相矛盾,所以不是甲打碎的。如果

6、是乙打碎的,那么甲说的是谎话,乙说的是谎话,丙说的是真话,与他们中只有一人说谎相矛盾,所以不是乙打碎的。如果是丙打碎的,那么甲说的是真话,乙说的是真话,而丙说的是谎话。这样有两个说的是真话,符合条件中只有一个人说的是谎话,所以玻璃是丙打碎的。例8 甲、乙、丙、丁4人比赛乒乓球,每两个都要赛一场。结果甲胜了丁,并且甲、乙、丙3人胜的场数相同,问:丁胜了几场?解答: 4个人每两人比赛一场一共6场,甲乙丙胜场一样,甲又胜了丁,则甲至少胜一场,三人加起来3场,那么丁胜利三场,可是这样与甲胜丁一场矛盾,故甲至少胜2场,三人刚好6场,所以丁一场都不胜。分析:假设甲乙丙同胜1场。甲胜丁, 甲输给了乙丙。又甲乙丙同胜1场。乙输给了丙丁。丙就胜了甲乙,即胜了两场。与假设相矛盾,假设不成立假设甲乙丙丁同胜3场那么甲乙丙丁将全胜,显然不符合。该假设不成立则,甲乙丙同胜2场一共进行432=6场。三人胜的场数相同刚好6场,所以丁一场都不胜。专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁