2012年北京高考数学试卷(理科解析版)(共11页).doc

上传人:飞****2 文档编号:13476654 上传时间:2022-04-29 格式:DOC 页数:11 大小:473KB
返回 下载 相关 举报
2012年北京高考数学试卷(理科解析版)(共11页).doc_第1页
第1页 / 共11页
2012年北京高考数学试卷(理科解析版)(共11页).doc_第2页
第2页 / 共11页
点击查看更多>>
资源描述

《2012年北京高考数学试卷(理科解析版)(共11页).doc》由会员分享,可在线阅读,更多相关《2012年北京高考数学试卷(理科解析版)(共11页).doc(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上2012年普通高等学校招生全国统一考试(北京卷)数学(理科)本试卷共5页. 150分.考试时长120分钟.考试生务必将答案答在答题卡上.在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共8小题。每小题5分.共40分.在每小题列出的四个选项中,选出符合胜目要求的一项.1已知集合A=xR|3x+20 B=xR|(x+1)(x-3)0 则AB=A (-,-1)B (-1,-) C (-,3)D (3,+)【解析】和往年一样,依然的集合(交集)运算,本次考查的是一次和二次不等式的解法。因为,利用二次不等式可得或画出数轴易得:故选D【

2、答案】D2设不等式组,表示平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是(A) (B) (C) (D)【解析】题目中表示的区域如图正方形所示,而动点D可以存在的位置为正方形面积减去四分之一圆的面积部分,因此,故选D。【答案】D3设a,bR。“a=0”是“复数a+bi是纯虚数”的( )A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【解析】当时,如果同时等于零,此时是实数,不是纯虚数,因此不是充分条件;而如果已经为纯虚数,由定义实部为零,虚部不为零可以得到,因此想必要条件,故选B。【答案】B4执行如图所示的程序框图,输出的S值为(

3、)A. 2 B .4 C.8 D. 16【解析】,循环结束,输出的s为8,故选C。【答案】5.如图. ACB=90,CDAB于点D,以BD为直径的圆与BC交于点E.则( )A. CECB=ADDB B. CECB=ADABC. ADAB=CD D.CEEB=CD 【解析】在中,ACB=90,CDAB于点D,所以,由切割线定理的,所以CECB=ADDB。【答案】A6.从0,2中选一个数字.从1.3.5中选两个数字,组成无重复数字的三位数.其中奇数的个数为( )A. 24 B. 18 C. 12 D. 6【解析】由于题目要求的是奇数,那么对于此三位数可以分成两种情况:奇偶奇;偶奇奇。如果是第一种奇

4、偶奇的情况,可以从个位开始分析(3种选择),之后十位(2种选择),最后百位(2种选择),共12种;如果是第二种情况偶奇奇,分析同理:个位(3种情况),十位(2种情况),百位(不能是0,一种情况),共6种,因此总共12+6=18种情况。【答案】B7.某三棱锥的三视图如图所示,该三梭锥的表面积是( )A. 28+6 B. 30+6 C. 56+ 12 D. 60+12【解析】从所给的三视图可以得到该几何体为三棱锥,如图所示,图中蓝色数字所表示的为直接从题目所给三视图中读出的长度,黑色数字代表通过勾股定理的计算得到的边长。本题所求表面积应为三棱锥四个面的面积之和,利用垂直关系和三角形面积公式,可得:

5、,因此该几何体表面积,故选B。【答案】B8.某棵果树前n前的总产量S与n之间的关系如图所示.从目前记录的结果看,前m年的年平均产量最高。m值为( )A.5 B.7 C.9 D.11【解析】由图可知6,7,8,9这几年增长最快,超过平均值,所以应该加入,因此选C。【答案】C第二部分(非选择题共110分)二.填空题共6小题。每小题5分。共30分.9直线为参数)与曲线为参数)的交点个数为_。 【解析】直线的普通方程,圆的普通方程为,可以直线圆相交,故有2个交点。【答案】210已知等差数列为其前n项和。若,则=_。【解析】因为,所以,。【答案】,11在ABC中,若=2,b+c=7,cosB=,则b=_

6、。【解析】在ABC中,利用余弦定理 ,化简得:,与题目条件联立,可解得【答案】412在直角坐标系xOy中,直线l过抛物线=4x的焦点F.且与该撇物线相交于A、B两点.其中点A在x轴上方。若直线l的倾斜角为60.则OAF的面积为 【解析】由可求得焦点坐标F(1,0),因为倾斜角为,所以直线的斜率为,利用点斜式,直线方程为,将直线和曲线联立,因此【答案】13已知正方形ABCD的边长为1,点E是AB边上的动点,则的值为_,的最大值为_。【解析】根据平面向量的数量积公式,由图可知,因此,而就是向量在边上的射影,要想让最大,即让射影最大,此时E点与B点重合,射影为,所以长度为1【答案】1,114.已知,

7、若同时满足条件:,或;, 。则m的取值范围是_。 【解析】根据,可解得。由于题目中第一个条件的限制,或成立的限制,导致在时必须是的。当时,不能做到在时,所以舍掉。因此,作为二次函数开口只能向下,故,且此时两个根为,。为保证此条件成立,需要,和大前提取交集结果为;又由于条件2:要求,0的限制,可分析得出在时,恒负,因此就需要在这个范围内有得正数的可能,即应该比两根中小的那个大,当时,解得,交集为空,舍。当时,两个根同为,舍。当时,解得,综上所述【答案】(lbylfx)三、解答题公6小题,共80分。解答应写出文字说明,演算步骤或证明过程。15(本小题共13分)已知函数。(1)求的定义域及最小正周期

8、;(2)求的单调递增区间。解(1):得:函数的定义域为 得:的最小正周期为; (2)函数的单调递增区间为 则 得:的单调递增区间为16(本小题共14分) 如图1,在RtABC中,C=90,BC=3,AC=6,D,E分别是AC,AB上的点,且DEBC,DE=2,将ADE沿DE折起到A1DE的位置,使A1CCD,如图2.(I)求证:A1C平面BCDE;(II)若M是A1D的中点,求CM与平面A1BE所成角的大小;(III)线段BC上是否存在点P,使平面A1DP与平面A1BE垂直?说明理由解:(1),平面,又平面,又,平面。(2)如图建系,则,,设平面法向量为则 又,与平面所成角的大小。(3)设线段

9、上存在点,设点坐标为,则则,设平面法向量为,则 。假设平面与平面垂直,则,不存在线段上存在点,使平面与平面垂直。17(本小题共13分)近年来,某市为了促进生活垃圾的风分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应分垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):“厨余垃圾”箱“可回收物”箱“其他垃圾”箱厨余垃圾400100100可回收物3024030其他垃圾202060()试估计厨余垃圾投放正确的概率;()试估计生活垃圾投放错误额概率;()假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”

10、箱的投放量分别为其中a0,=600。当数据的方差最大时,写出的值(结论不要求证明),并求此时的值。(注:,其中为数据的平均数)解:(1)由题意可知:。(2)由题意可知:。(3)由题意可知:,因此有当,时,有18(本小题共13分)已知函数,.(1)若曲线与曲线在它们的交点处具有公共切线,求,的值;(2)当时,求函数的单调区间,并求其在区间上的最大值.解:(1)由为公共切点可得:,则,则,又,即,代入式可得:(2),设则,令,解得:,;,原函数在单调递增,在单调递减,在上单调递增若,即时,最大值为;若,即时,最大值为若时,即时,最大值为综上所述:当时,最大值为;当时,最大值为19(本小题共14分)

11、已知曲线.(1)若曲线是焦点在轴上的椭圆,求的取值范围;(2)设,曲线与轴的交点为,(点位于点的上方),直线与曲线交于不同的两点,直线与直线交于点,求证:,三点共线.解:(1)原曲线方程可化简得:由题意可得:,解得:(2)由已知直线代入椭圆方程化简得:,解得:由韦达定理得:,设,方程为:,则,欲证三点共线,只需证,共线即成立,化简得:将代入易知等式成立,则三点共线得证。(lby lfx)20(本小题共13分)设是由个实数组成的行列的数表,满足:每个数的绝对值不大于,且所有数的和为零. 记为所有这样的数表组成的集合. 对于,记为的第行各数之和(),为的第列各数之和();记为,中的最小值.(1)对

12、如下数表,求的值; (2)设数表形如 求的最大值;(3)给定正整数,对于所有的,求的最大值.解:(1)由题意可知,(2)先用反证法证明:若则,同理可知,由题目所有数和为即与题目条件矛盾易知当时,存在的最大值为1(3)的最大值为.首先构造满足的:,.经计算知,中每个元素的绝对值都小于1,所有元素之和为0,且,.下面证明是最大值. 若不然,则存在一个数表,使得.由的定义知的每一列两个数之和的绝对值都不小于,而两个绝对值不超过1的数的和,其绝对值不超过2,故的每一列两个数之和的绝对值都在区间中. 由于,故的每一列两个数符号均与列和的符号相同,且绝对值均不小于.设中有列的列和为正,有列的列和为负,由对称性不妨设,则. 另外,由对称性不妨设的第一行行和为正,第二行行和为负.考虑的第一行,由前面结论知的第一行有不超过个正数和不少于个负数,每个正数的绝对值不超过1(即每个正数均不超过1),每个负数的绝对值不小于(即每个负数均不超过). 因此,故的第一行行和的绝对值小于,与假设矛盾. 因此的最大值为。(lby lfx)专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁