《数学建模竞赛阅卷中的问题(共20页).doc》由会员分享,可在线阅读,更多相关《数学建模竞赛阅卷中的问题(共20页).doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上 数学建模竞赛阅卷中的问题摘 要本文讨论的是数学建模竞赛阅卷中的问题,使阅卷效果达到最优、最准确。在整个解题过程中采用随机分配的方法,作出散点图,评价试卷分配的均匀性,建立差比模型及差分模型,得出试卷的标准化成绩和对教师的评阅效果。针对问题一,通过MATLAB软件产生一组1500的随机整数,不断对这些数进行分组重排移位拼接最终得到数组A。根据教师评卷总次数与第i、j个教师的交叉组合总的情况数的比值确定了平均任意两个评阅老师交叉阅卷次数。从而得到了计算任意两个教师评阅试卷交叉次数的方差值。在建立算法的基础上,作出程序框图,让解题的思路更显然,还作出散点图,用来进行均匀性
2、评价,发现交叉次数分布大约在515次之间,得出试卷的分发很均匀。针对问题二,建立差比模型,对每位教师的评分进行预处理和标准化,通过计算每份试卷给出的三个成绩与相对应评阅教师所给最低分的差值和相应评阅教室最高分与最低分差值的比值的平均值作为该份试卷的平均差比,以每份数模试卷中三个教师中最高分的平均值与最低分的平均值的差值作为该份试卷三个评分教师给分的相对极差。因此,每份试卷的标准化成绩就是该份试卷中三个教师中最低分的平均值与该份试卷三个评分教师给分的相对极差和该份试卷的平均差比的乘积之和。针对问题三,以第二问求得的结果作为第三问解题的基础,建立差分模型,通过该模型中的算法算出每位评分教师所评旳实
3、际分数在相应试卷标准化成绩附近波动的大小。在其附近波动的越小,及波动值越小,评阅效果就越好,反之,评阅效果就越差。关键词:随机分配、分组重排移位、差比模型、差分模型一、问题重述1.1问题背景众所周知,数学建模问题无处不在,我们身边的生活、工作中随处可见各式各样的数模问题。数模竞赛之后都要经过阅卷的过程,除了几十名教师参与繁重的评阅试卷的工作外,许多管理工作都有很强的技术性。比如试卷的分发、教师评分的预处理、对每位教师评阅效果的评价等。这些做得好坏,直接影响着评阅的合理性和公正性,我们追求最优、最准确的评阅效果。1.2相关信息一次竞赛通常试卷有几百份,评阅前已将试卷打乱编号。每份试卷就是一篇科技
4、论文,评阅教师需要综合考虑各方面情况给出一个成绩。每份试卷应有三名不同的教师评阅,所给出的三个成绩合成该试卷的最后成绩。各位教师对自己所在单位的试卷应该回避,但这件事比较容易处理,我们这里就不考虑这个原因,也就是假设教师都没有本单位的试卷。1.3待解决的问题试卷的随机分法:考虑有500份试卷由20名阅卷教师评阅的情况。每份三人评阅就共需要1500人次,每人阅卷75份。提前编写程序,让试卷随机地分发到教师的任务单中。注意让每份试卷分给每位教师等可能,另外任何两位教师交叉共同评阅一份试卷的情况也尽量均匀,即尽量不要出现交叉次数过多或过少的情况。再编写一个程序,对一次分发的任务单进行均匀性的评价。然
5、后可以在多次生成的任务单中选出一个评价比较好的来使用。请给出两个程序的算法或框图,并选出一个好的分配任务单供使用及对它的评价。如果在评阅试卷时,每位专家都不能评阅本单位的试卷,该如何分发?评分的预处理:全部阅完之后,就要进行成绩的合成了。但是,每个人见到的卷子不同,实际评分标准也不完全相同(尽管评阅前已经集体开会、讨论,统一评卷标准),大家的分数没有直接的可比性,所以不能简单地合成,需要预处理。比如,可能出现一份试卷的两位评阅教师都给出70分的评价,但是其中一个70分是他给出的最高分,另一个则是他的最低分,能认为这个试卷就应该是70分吗?!请设计一个成绩预处理的算法把教师给出的成绩算得标准化成
6、绩,然后用三个标准化成绩就可以直接合成了,使得合成的成绩尽量地公平合理并且为后面对教师评阅效果的评价提供方便。教师评阅效果的评价:阅卷全部结束之后,组织者要对所聘请的教师有一个宏观的评价,哪些教师比较认真,对评分标准掌握得也好,看论文又快又准,因此给出的成绩比较准确,是这次阅卷的主力。下次再有类似的事情一定还请他们来,甚至于在下一次阅卷后合成成绩的时候给他们以更大的权值。这些除了在日常的生活工作中会有所感觉外,大家给出的成绩也会说明一些问题。请制定一个方法,利用每人给出的成绩,反过来给教师的评阅效果给出评价。 二、问题分析2.1问题一分析对于试卷的随机分发,由于每份试卷要给三个老师评阅。所以对
7、于试卷分发,分为三次,每次分发不重复的500套试卷。假设500份试卷的编号由1500表示,则随机产生一组1500的随机整数,将整数分为20组,每组25套试卷随机分发给老师。然后再将20组分成5部分,每部分经过随机排列,再移位发给老师进行第二次评阅。如此按照此方法得出第三次评阅的随机分发试卷,然后将三次得到的数据进行拼接,得出最终试卷分配的方法。2.2问题二分析阅卷完成之后,应该根据老师们给的实际评分,对其进行客观、相对公平的预处理,使其尽可能标准化地合成每份试卷的最终成绩。如何做到标准化,因为每份试卷由三个教师来评阅,虽然有规定的统一的评分标准,但实际情况下他们的评分标准肯定不是完全相同的。应
8、用概率统计的知识,计算每份试卷给出的三个成绩与相对应评阅教师所给最低分的差值和相应评阅教室最高分与最低分差值的比值的平均值作为该份试卷的平均差比,以每份数模试卷中三个教师中最高分的平均值与最低分的平均值的差值作为该份试卷三个评分教师给分的相对极差,每份试卷的标准化成绩就可以由该份试卷中三个教师中最低分的平均值与该份试卷三个评分教师给分的相对极差和该份试卷的平均差比的乘积之和得到。这样合成的试卷的最终成绩就能做得到尽量公平、合理。2.3问题三分析对于教师评阅效果的评价,可以用他们评阅每一份试卷的实际给分与对应试卷的经过标准化合成的最终成绩作差,然后求和取平均差值,差值越小的即实际给分在标准化成绩
9、附近波动的越小,效果越好,值越大的即实际给分在标准化成绩附近波动的越大,效果越差。通过这种方法对教师的评阅效果进行评价,就能够比较好地得出每一个阅卷老师的评卷能力。三、模型假设(1)教师是以相同的态度评阅自己任务单里面的每一份试卷,公正性是一样的;(2)每份试卷分发给每位教师等可能;(3)教师之间在评阅试卷的过程不会发生争执现象;(4)每个教师的评卷标准相对统一。四、符号说明符号说明与分析随机分发试卷方法的75行20列的数组第i个评阅老师和第j个评阅老师的组合第i个评阅老师和第j个评阅老师交叉评阅试卷次数参加评阅同一份试卷的三位教师的编号教师评阅卷号给出的分数教师评阅卷号给出的分数教师评阅卷号
10、给出的分数教师评阅所有试卷给出的分数最小值教师评阅所有试卷给出的分数最小值教师评阅所有试卷给出的分数最小值教师评阅所有试卷给出的分数最大值 教师评阅所有试卷给出的分数最大值教师评阅所有试卷给出的分数最大值卷号三个分数比例的平均值三位教师给出试卷分数最小值的平均值三位教师给出试卷分数最大值的平均值卷号的标准化成绩其中一位教师对应其卷号给出的实际成绩五、模型建立求解5.1问题一该模型将试卷分为三次分发,每次分发不重复的500套试卷。首先用matlab产生一组1500的随机整数,然后进行重排,将其排成一个25行20列的数组A1。其中120列代表20名阅卷老师的编号,25行代表每个阅卷老师评阅的25份
11、试卷的编号。以所得的数组A1为模板,将数组A1行分割成五行,列分割成五列。这样就可以得到25个5行4列的小数组A11,将数组A11进行随机重排,为了避免一个阅卷老师阅到两份一样的试卷,数组A11随机重排后,还是还原到原来所在列。并第五列移到第一列,其它列依次向后移动一列。这样得到一个25行20列新数组A2。同样再将数组A1分割25个5行4列的小数组A12,对每个小数组A12,进行随机重排、组合、移位的得到一个25行20列的新数组A3。最后将数组A1、A2、A3拼接成一个75行20列的大数组A。数组A即是分发给各位老师的试卷编号。因为一张试卷给三个评阅老师评阅,则一张试卷的评阅交叉次数;则总的交
12、叉次数。假设第i个评阅老师和第j个评阅老师的组合用表示,则,则平均任意两个评阅老师交叉阅卷次数为。第i个评阅老师和第j个评阅老师交叉评阅试卷次数用表示,则方差,然后求所得数组A的方差,如果方差小于23,则输出数组A。(计算程序见附录一)具体框图如下:对于该模型的均匀性评价:首先读取分发程序随机产生的数组A,通过循环求出任意两评阅老师i,j交叉评阅的试卷次数,再作出任意两评阅老师i,j第次组合比较与交叉评阅次数的散点图。程序框图如下:运行程序结果如下(程序见附录二):和散点图为:由图易知:任意两个评阅老师的交叉评阅次数大致分布在515次之间,交叉次数适中。5.2问题二 通过设立改任意一份试卷的三
13、位教师评分的最大值和最小值,然后根据每位教师针对同一份试卷所给出的分数与其最小值的差值在相对应的两极值之间所占的比例进行求平均,最后整合出标准化成绩。问题二的模型建立与求解:令参加评阅同一份试卷的三位教师的给出的分数区间分别为:其中分别为三位教师对卷号给出的分数,分别为对应教师评分的最小值,分别为对应教师评分的最大值。所给出的分数在相对应的两极值之间所占的比例分别为:三个分数比例的平均值为:;三位教师的平均评分最小值为:;三位教师的平均评分最大值为:;得出教师给出的成绩的标准化成绩的算法为:;利用这种方法就可以将教师给出的三个成绩直接合成为标准化成绩,并使得合成的成绩更公平合理,也为后面对教师
14、评阅效果的评价提供方便。通过对题目给出的表格的数据进行计算统计得出的,和的值,另外对以上模型进行编程得出的程序见附录三。5.3问题三在问题二中,通过建立模型及对其模型的求解,对每位评阅教师所给成绩的标准化较合理地合成了每份试卷的标准化成绩。根据每位评阅教师所评旳实际分数在相应试卷标准化成绩附近波动的大小来确定其评阅效果。在其附近波动的越小,及波动值越小,评阅效果就越好,反之,评阅效果就越差。问题三的模型建立与求解:设i卷号试卷的标准化成绩是,任意一位教师评阅n份试卷,实际给出的成绩对应卷号分别是,第位教师评阅试卷实际给分与标准化成绩的平均值是,则:得出教师给出的成绩的标准化成绩的算法为:此处,
15、与问题二中的求法一致。根据题目所给的专家评阅试卷的评分表及以上列出的算法,得到结果如下表:专家编号12345678910所阅试卷与标准化成绩的平均差值3.43 6.35 4.05 3.42 7.59 6.61 4.36 6.81 6.47 5.46 专家编号11121314151617181920所阅试卷与标准化成绩的平均差值6.51 4.37 4.22 5.87 5.27 5.70 5.93 5.85 5.51 3.61 根据上表,通过使用MATLAB软件作出专家评分能力折线图:通过以上折线图,我们将教师的评分能力划分为优、良、中、差四个等级,所阅试卷与标准化成绩的平均差值在34范围内为优等
16、级,45范围内为良等级,56范围内为中等级,6以上为差等级。根据该问题中的模型可以更好地宏观评价教师的评阅能力。六、模型检验对模型二的特殊情况进行检验:1. 当三位评阅教师共同对一篇优秀试卷进行评阅,并给出每位教师自己的最高分;当专家1、2、3共同对一篇优秀试卷进行评阅时,给出的最高分分别为77 80 85,得出的标准化成绩为80.6667;当专家4、5、6共同对一篇优秀试卷进行评阅时,给出的最高分分别为80 78 85,得出的标准化成绩为81;2. 当三位评阅教师共同对一篇较差试卷进行评阅,并给出每位教师自己的最低分;当专家7、8、9共同对一篇较差试卷进行评阅时,给出的最低分分别为54 34
17、 51,得出的标准化成绩为46.3333;当专家10、11、12共同对一篇较差试卷进行评阅时,给出的最低分分别为54 51 50,得出的标准化成绩为51.6667;综上列举出的特殊情况得出的标准化成绩与每位评阅教师给出的分数很相近,因此可以推出模型二具有稳定性;另外模型二针对任何此种问题都适用,具有很好的评价性和推广性。七、模型评价与推广优点:(1)试卷分发随机性强,任意两位教师评阅试卷的交叉次数适中。(2)运用差比模型,客观地解决了不同阅卷教师对于同一份试卷实际给分相差很大的不定性问题。(3)通过对问题所给出的表格进行数据统计,巧妙地把教师给出的成绩换算成标准化成绩,使得同一份试卷的三个标准
18、化成绩可以直接合成。缺点:文中给出的数据不多,做题时间有限,对数据的统计不完全,因此对数据的处理存在一定的误差。八、参考文献【1】 胡良剑,孙晓君,MATLAB数学实验,北京:高等教育出版社,2006.6【2】 乐励华,段五朵,概率论与数理统计,江西:江西高校出版社,2013.1【3】 姜启源,谢金星,叶俊,数学模型,北京:高等教育出版社,2011.1【4】 (美)帕普里斯,(美)佩莱,概率、随机变量与随机过程(第四版),西安:西安交通大学出版社,2012.08九、附录附录一:function A=yuejuan()M=1;while Mclear;clc;A1= randperm(500);
19、A1=reshape(A1,25,20);AA1 AA2 AA3 AA4 AA5=chongpai(A1);A1=AA1 AA2 AA3 AA4 AA5;AA1 AA2 AA3 AA4 AA5=chongpai(A1);A2=AA2 AA3 AA4 AA5 AA1;AA1 AA2 AA3 AA4 AA5=chongpai(A1);A3=AA3 AA4 AA5 AA1 AA2;A=A1;A2;A3;p=0;for i=1:19 for j=i+1:20 a=A(:,i); b=A(:,j); m=size(intersect(a,b); p=p+1; n(p)=m(1); endendfcha=
20、sum(n-1500/190).2)/190;M=fcha23;endxlswrite(D:1.xls,A,sheet1);end function AA=xiugai(A)ges=size(A);ge=ges(1)*ges(2);old=reshape(A,ge,1);new = old(randperm(size(old,1),:);AA=reshape(new,ges(1),ges(2);end function AA1 AA2 AA3 AA4 AA5=chongpai(A1)r=0;for i=1:4:20 for j=1:5:25 r=r+1;B=A1(j:j+4,i:i+3);C=
21、xiugai(B); if r=1 T=C; else T=T;C; end endendAA1=T(1:25,:);AA2=T(26:50,:);AA3=T(51:75,:);AA4=T(76:100,:);AA5=T(101:125,:);end附录二:function =junyun()clear;clc;A=xlsread(D:1.xls,sheet1);p=0;for i=1:19 for j=i+1:20 a=A(:,i); b=A(:,j); m=size(intersect(a,b); p=p+1; n(p)=m(1); endendplot(1:p,n,.r);end附录三:
22、卷号ABB-A平均值标准化成绩YG0834886.6666738.666670.84.G08443.666678743.333330.84.G17750.3333383.6666733.333330.83.G0694783.6666736.666670.83.G11144.6666784.3333339.666670.81.G15444.6666784.3333339.666670.81.G19344.6666784.3333339.666670.81.G0874786.6666739.666670.81.G13750.6666780.3333329.66667180.G0945286.333
23、3334.333330.79.G0593382490.79.G16343.6666787.3333343.666670.79.G09343.6666784.66667410.79.G09538.666678546.333330.79.G03645.333338539.666670.78.G12052.3333386.33333340.78.G06850.3333383.6666733.333330.78.G00642.3333385.33333430.76.G07551.6666781.3333329.666670.76.G18351.6666781.3333329.666670.76.G13
24、43887.6666749.666670.76.G17848.3333384.33333360.7838876.G03540.3333381.6666741.333330.8720676.G17640.3333381.6666741.333330.8720676.G07048.333338334.666670.7992576.G13338.3333388.33333500.75.G17951.6666784.3333332.666670.75.G08142.3333379.6666737.333330.75.G04650.3333380.33333300.75.G13544.666678237
25、.333330.75.G0714983.6666734.666670.74.G08943.666678339.333330.74.G1244180.3333339.333330.74.G14137.333338143.666670.74.G02731.6666784.66667530.7932273.G16831.6666784.66667530.7932273.G07252.3333383.6666731.333330.73.G1385079.6666729.666670.73.G00951.666678432.333330.73.G05046.6666782.66667360.73.G02
26、820.6666782.3333361.666670.73.G16920.6666782.3333361.666670.73.G18053.3333381.6666728.333330.72.G05318.6666781.66667630.72.G01651.666678331.333330.6602772.G1472581560.72.G0324282400.7554472.G1734282400.7554472.G04139.6666783.3333343.666670.72.G16046.3333382.6666736.333330.72.G06150.333338736.666670.
27、72.G12151.666678432.333330.72.G0102479.3333355.333330.866471.G14038.6666784.66667460.7224671.G13037.333338143.666670.71.G02338.333338041.666670.71.G16438.333338041.666670.71.G0605385.6666732.666670.71.G13153.6666785.66667320.71.G09751.666678432.333330.71.G02152.6666783.3333330.666670.71.G0044681.666
28、6735.666670.71.G02251.666678432.333330.70.G11751.6666783.3333331.666670.70.G09251.6666783.66667320.70.G0733887.6666749.666670.6419469.G1813887.6666749.666670.6419469.G14441.6666781.3333339.666670.69.G12746.333337932.666670.69.G02538.333338041.666670.69.G16638.333338041.666670.69.G12639.6666782.33333
29、42.666670.69.G10030.3333380.6666750.333330.69.G02936.6666787.3333350.666670.68.G17036.6666787.3333350.666670.68.G01346.6666782.66667360.68.G0883884.3333346.333330.68.G18945.6666785.66667400.68.G0434180.3333339.333330.68.G1424581.3333336.333330.68.G19246.666678538.333330.68.G1464881330.68.G10743.6666
30、788.66667450.68.G15043.6666788.66667450.68.G04946.6666782.66667360.68G04043.333338339.666670.67.G0625287.6666735.666670.67.G10551.666678533.333330.67.G1994882340.67.G02439.666678141.333330.67.G16539.666678141.333330.67.G1904882.6666734.666670.67.G0544180.3333339.333330.67.G1085084.3333334.333330.489
31、0166.G11041.3333385.33333440.66.G15341.3333385.33333440.66.G10146.6666784.3333337.666670.66.G15847.666678335.333330.66.G14825.666678559.333330.66.G05739.666678141.333330.66.G0904086460.66.G1514684.3333338.333330.66.G02052.6666783.3333330.666670.66.G05230.3333380.6666750.333330.65.G13643.6666783.3333
32、339.666670.65.G11543.3333383.6666740.333330.65.G09851.666678432.333330.65.G0053884.3333346.333330.65.G04846.6666782.66667360.65.G12250.6666783.66667330.442365.G04446.333337932.666670.64.G01940.3333384.6666744.333330.64.G0454290.3333348.333330.64.G0564180.3333339.333330.63.G08249.3333383.6666734.3333
33、30.63.G11443.666678238.333330.63.G03943.333338339.666670.63.G07628.3333382.6666754.333330.63.G18428.3333382.6666754.333330.63.G15742.666678239.333330.63.G19642.666678239.333330.63.G1024585.6666740.666670.62.G19743.3333383.6666740.333330.62.G1494788410.3846862.G1234282400.5170162.G13951.666678432.333
34、330.3358462.G05825.666678256.333330.6496562.G10643.6666787.3333343.666670.62.G18641.333338543.666670.61.G04750.6666783.66667330.61.G1252479.3333355.333330.61.G16132.6666786.3333353.666670.61.G20032.6666786.3333353.666670.61.G08542.6666788.66667460.61.G00851.666678432.333330.61.G1183887490.61.G001247
35、9.3333355.333330.61.G16232.6666786.3333353.666670.61.G05139.6666774.66667350.6130761.G0664282400.61.G07840.333338544.666670.60.G03846.333337932.666670.60.G18250.3333383.6666733.333330.60.G0745184.3333333.333330.60.G08644.333338843.666670.60.G11941.3333385.33333440.60.G1295286.3333334.333330.60.G0964
36、582.3333337.333330.60.G09139.3333388.33333490.59.G07937.3333381.33333440.59.G18737.3333381.33333440.59.G14341.6666781.3333339.666670.59.G1043884.3333346.333330.59.G14537.3333381.33333440.58.G03039.6666779.3333339.666670.58.G17139.6666779.3333339.666670.58.G00751.666678432.333330.58.G13252.333338330.
37、666670.58.G10942.666678239.333330.58.G15242.666678239.333330.58.G19142.666678239.333330.58.G01532.6666786.3333353.666670.58.G0143281.3333349.333330.57.G03749.3333383.6666734.333330.57.G04243.333338339.666670.57.G18551.3333383.6666732.333330.57.G02633.3333385.33333520.56.G16733.3333385.33333520.56.G0
38、775184.3333333.333330.56.G11642.3333383.6666741.333330.55.G15942.3333383.6666741.333330.55.G19842.3333383.6666741.333330.55.G1033884.3333346.333330.3630254.G03446.333338437.666670.54.G1754882340.54.G0803082.6666752.666670.53.G1883082.6666752.666670.53.G01848.333338334.666670.53.G1955081.6666731.6666
39、70.52.G0112479.3333355.333330.52.G12848.3333385.6666737.333330.52.G06739.6666783.3333343.666670.52.G06432.6666785.3333352.666670.50.G1134282400.50.G1564282400.50.G0633884.3333346.333330.49.G0314680.3333334.333330.48.G03348.6666787.6666739048.G1724681.6666735.666670.48.G0124680.3333334.333330.072148.G17446.3333382.6666736.333330.0530348.G00229.333338353.666670.48.G01740.3333384.6666744.333330.47.G0653884.33333