《函数与方程知识点总结(共4页).doc》由会员分享,可在线阅读,更多相关《函数与方程知识点总结(共4页).doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上函数与方程知识点总结1、函数零点的定义(1)对于函数,我们把方程的实数根叫做函数的零点。(2)方程有实根函数的图像与x轴有交点函数有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程是否有实数根,有几个实数根。函数零点的求法:解方程,所得实数根就是的零点(3)变号零点与不变号零点若函数在零点左右两侧的函数值异号,则称该零点为函数的变号零点。若函数在零点左右两侧的函数值同号,则称该零点为函数的不变号零点。若函数在区间上的图像是一条连续的曲线,则是在区间内有零点的充分不必要条件。2、函数零点的判定(1)零点存在性定理:如果函数在区间上的图象是连续不断的曲线,并且有
2、,那么, 函数在区间内有零点,即存在,使得,这个也就是方程的根。(2)函数零点个数(或方程实数根的个数)确定方法 代数法:函数的零点的根;(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点。(3)二次函数零点个数确定有2个零点有两个不等实根; 有1个零点有两个相等实根;无零点无实根;对于二次函数在区间上的零点个数,要结合图像进行确定.1、 二分法(1)二分法的定义:对于在区间上连续不断且的函数,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法;(2)用二分法求方程的近似解的步骤: 确定区间,验证
3、,给定精确度;求区间的中点;计算;()若,则就是函数的零点;() 若,则令(此时零点);() 若,则令(此时零点);判断是否达到精确度,即,则得到零点近似值为(或);否则重复至步.【经典例题】【例1】函数在区间内的零点个数是 ( B )A、0 B、1C、2D、3【解析】解法1:因为,即且函数在内连续不断,故在内的零点个数是1.解法2:设,在同一坐标系中作出两函数的图像如图所示:可知B正确.【例2】函数f(x)2x3x的零点所在的一个区间是 ( B)A、(2,1) B、(1,0) C、(0,1) D、(1,2)【解析】f(1)213(1)0,f(1) f(0)0.f(x)2x3x的零点所在的一个
4、区间为(1,0)【例3】下列函数中能用二分法求零点的是 ( C )【例4】若函数 (且)有两个零点,则实数的取值范围是.【解析】函数= (且)有两个零点,方程有两个不相等的实数根,即两个函数与的图像有两个不同的交点,当时,两个函数的图像有且仅有一个交点,不合题意;当时,两个函数的图像有两个交点,满足题意.【例5】函数, 零点个数为 ( B )A、3 B、2 C、1 D、0【例6】若函数的一个正数零点附近的函数值用二分法计算,其参考数据如下:f (1) = 2f (1.5) = 0.625f (1.25) = 0.984f (1.375) = 0.260f (1.4375) = 0.162f (
5、1.40625) = 0.054那么方程的一个近似根(精确到0.1)为 ( C ) A、1.2 B、1.3 C、1.4 D、1.5【例7】如果二次函数有两个不同的零点,则的取值范围是 ( C )A、 B、 C、 D、【例8】方程根的个数为 ( D )A、 无穷多 B、 C、 D、【例9】用二分法研究函数的零点时,第一次经计算,可得其中一个零点 ,第二次应计算 . 以上横线上应填的内容为 ( A )A、(0,0.5), B、(0,1),C、(0.5,1), D、(0,0.5),反思:(1)函数零点(即方程的根)的确定问题,常见的有:函数零点值大致存在区间的确定;零点个数的确定;两函数图象交点的横坐标或有几个交点的确定解决这类问题的常用方法有解方程法、利用零点存在的判定或数形结合法,尤其是方程两端对应的函数类型不同的方程多以数形结合求解(2) 提醒:函数的零点不是点,是方程的根,即当函数的自变量取这个实数时,其函数值等于零函数的零点也就是函数yf(x)的图象与x轴的交点的横坐标专心-专注-专业