2015新版人教版六年级数学下册第五单元-数学广角--鸽巢问题--单元备课和教案(共11页).doc

上传人:飞****2 文档编号:13360563 上传时间:2022-04-29 格式:DOC 页数:11 大小:43.50KB
返回 下载 相关 举报
2015新版人教版六年级数学下册第五单元-数学广角--鸽巢问题--单元备课和教案(共11页).doc_第1页
第1页 / 共11页
2015新版人教版六年级数学下册第五单元-数学广角--鸽巢问题--单元备课和教案(共11页).doc_第2页
第2页 / 共11页
点击查看更多>>
资源描述

《2015新版人教版六年级数学下册第五单元-数学广角--鸽巢问题--单元备课和教案(共11页).doc》由会员分享,可在线阅读,更多相关《2015新版人教版六年级数学下册第五单元-数学广角--鸽巢问题--单元备课和教案(共11页).doc(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上第五单元 数学广角鸽巢问题 单元备课一、教材分析: 本教材专门安排“数学广角”这一单元,向学生渗透一些重要的数学思想方法。和以往的义务教育教材相比,这部分内容是新增的内容。本单元教材通过几个直观例子,借助实际操作,向学生介绍“鸽巢问题”,使学生在理解“鸽巢问题”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“鸽巢问题”加以解决。在数学问题中,有一类与“存在性”有关的问题。在这类问题中,只需要确定某个物体(或某个人)的存在就是可以了,并不需要指出是哪个物体(或人)。这类问题依据的理论我们称之为“抽屉原理”。“抽屉原理”最先是19世纪的德国数学家狄利克雷运

2、用于解决数学问题的,所以又称“狄利克雷原理”,也称之为“鸽巢问题”。“鸽巢问题”的理论本身并不复杂,甚至可以说是显而易见的。但“鸽巢问题”的应用却是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结论。因此,“鸽巢问题”在数论、集合论、组合论中都得到了广泛的应用。 “鸽巢原理”的变式很多,在生活中运用广泛,学生在生活中常常遇到此类问题。教学时,要引导学生先判断某个问题是否属于“鸽巢原理”可以解决的范畴。能不能将这个问题同“鸽巢原理”结合起来,是本次教学能否成功的关键。所以,在教学中,应有意识地让学生理解“鸽巢原理”的“一般化模型”。六年级的学生理解能力、学习能力和生活经验已

3、达到能够掌握本章内容的程度。教材选取的是学生熟悉的,易于理解的生活实例,将具体实际与数学原理结合起来,有助于提高学生的逻辑思维能力和解决实际问题的能力。 二、三维目标: 1、 知识与技能: 引导学生通过观察、猜测、实验、推理等活动,经历探究“鸽巢原理”的过程,初步了解“鸽巢原理”的含义,会用“鸽巢原理”解决简单的实际问题。 2、过程与方法:(1) 经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。 (2)学会与人合作,并能与人交流思维过程和结果。 3、情感态度与价值观: (1)积极参与探索活动,体验数学活动充满着探索与创造。 (2)体会数学与生活的

4、紧密联系,感受数学在实际生活中的作用,体验学数学、用数学的乐趣。 (3)通过“鸽巢原理”的灵活应用,感受数学的魅力。(4)理解知识的产生过程,受到历史唯物注意的教育。三、教学重点:应用“鸽巢原理”解决实际问题,引导学会把具体问题转化成“鸽巢问题。四、教学难点:理解“鸽巢原理”,找出”鸽巢问题“解决的窍门进行反复推理。五、教学措施: 1、让学生经历“数学证明”的过程。可以鼓励、引导学生借助学具、实物操作或画草图的方式进行“说理”。通过“说理”的方式理解“鸽巢原理”的过程是一种数学证明的雏形。通过这样的方式,有助于提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。 2、有意识地培养学生的“

5、模型”思想。当我们面对一个具体的问题时,能否将这个具体问题和“鸽巢原理”联系起来,能否找到该问题中的具体情境与“鸽巢原理”的“一般化模型”之间的内在关系,找出该问题中什么是“待分的东西”,什么是“鸽巢”,是解决问题的关键。教学时,要引导学生先判断某个问题是否属于用“鸽巢原理”可以解决的范畴;再思考如何寻找隐藏在其背后的“鸽巢问题”的一般模型。这个过程是学生经历将具体问题“数学化”的过程,从纷繁复杂的现实素材中找出最本质的数学模型,是学生数学思维和能力的重要体现。 3、要适当把握教学要求。“鸽巢原理”本身或许并不复杂,但它的应用广泛且灵活多变。因此,用“鸽巢原理”解决实际问题时,经常会遇到一些困

6、难。例如,有时要找到实际问题与“鸽巢原理”之间的联系并不容易,即使找到了,也很难确定用什么作为“鸽巢”,要用几个“鸽巢”。因此,教学时,不必过于要求学生“说理”的严密性,只要能结合具体问题,把大致意思说出来就可以了,鼓励学生借助实物操作等直观方式进行猜测、验证。 六、课时安排:3课时 鸽巢问题-1课时 “鸽巢问题”的具体应用-1课时 练习课-1课时 鱼岳镇第三小学电子教案 执教: 第1课时 时间:教学课题:鸽巢问题 教学内容:教材第68-70页例1、例2,及“做一做”,及第71页练习十三的1-2题。 三维目标:1、知识与技能:了解“鸽巢问题”的特点,理解“鸽巢原理”的含义。使学生学会用此原理解

7、决简单的实际问题。 2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。 3、情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。 教学重点:引导学生把具体问题转化成“鸽巢问题”。教学难点:找出“鸽巢问题”解决的窍门进行反复推理。教具准备:多媒体课件。教学过程:一、 创设情境,导入新知老师组织学生做“抢椅子”游戏( 请3位同学上来,摆开2条椅子),并宣布游戏规则。 师:象这样的现象中隐藏着什么数学奥秘呢?这节课我们就一起来研究这个原理。-出示课题 二、合作交流,探究新知 1、教学例1(课

8、件出示例题1情境图) 思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。为什么呢?“总有”和“至少”是什么意思? 学生通过操作发现规律理解关键词的含义探究证明认识“鸽巢问题”的学习过程来解决问题。 (1)操作发现规律:通过吧4支铅笔放进3个笔筒中,可以发现:不管怎么放,总有1鸽笔筒里至少有2支铅笔。 (2)理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。 (3)探究证明。 方法一:用“枚举法”证明。 方法二:用“分解法”证明。 把4分解成3个数。 由图可知,把4分解成3个数,与枚举法相似,也有4中

9、情况,每一种情况分得的3个数中,至少有1个数是不小于2的数。 方法三:用“假设法”证明。 通过以上几种方法证明都可以发现:把4只铅笔放进3个笔筒中,无论怎么放,总有1个笔筒里至少放进2只铅笔。 (4)认识“鸽巢问题” 像上面的问题就是“鸽巢问题”,也叫“抽屉问题”。在这里,4支铅笔是要分放的物体,就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”或“抽屉”,把此问题用“鸽巢问题”的语言描述就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。 这里的“总有”指的是“一定有”或“肯定有”的意思;而“至少”指的是最少,即在所有方法中,放的鸽子最多的那个“笼子”里鸽子“最少”的个数。 小结:

10、只要放的铅笔数比笔筒的数量多,就总有1个笔筒里至少放进2支铅笔。 如果放的铅笔数比笔筒的数量多2,那么总有1个笔筒至少放2支铅笔;如果放的铅笔比笔筒的数量多3,那么总有1个笔筒里至少放2只铅笔 小结:只要放的铅笔数比笔筒的数量多,就总有1个笔筒里至少放2支铅笔。 (5)归纳总结: 鸽巢原理(一):如果把m个物体任意放进n个抽屉里(mn,且n是非零自然数),那么一定有一个抽屉里至少放进了放进了2个物体。 2、教学例2(课件出示例题2情境图) 思考问题:(一)把7本书放进3个抽屉,不管怎么放,总有1个抽屉里至少有3本书。为什么呢?(二)如果有8本书会怎样呢?10本书呢? 学生通过“探究证明得出结论

11、”的学习过程来解决问题(一)。 (1)探究证明。 方法一:用数的分解法证明。 把7分解成3个数的和。把7本书放进3个抽屉里,共有如下8种情况: 由图可知,每种情况分得的3个数中,至少有1个数不小于3,也就是每种分法中最多那个数最小是3,即总有1个抽屉至少放进3本书。 方法二:用假设法证明。 把7本书平均分成3份,73=2(本).1(本),若每个抽屉放2本,则还剩1本。如果把剩下的这1本书放进任意1个抽屉中,那么这个抽屉里就有3本书。 (2)得出结论。 通过以上两种方法都可以发现:7本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。 学生通过“假设分析法归纳总结”的学习过程来解决问题

12、(二)。(1)用假设法分析。 83=2(本).2(本),剩下2本,分别放进其中2个抽屉中,使其中2个抽屉都变成3本,因此把8本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。 103=3(本).1(本),把10本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进4本书。 (2)归纳总结: 综合上面两种情况,要把a本书放进3个抽屉里,如果a3=b(本).1(本)或a3=b(本).2(本),那么一定有1个抽屉里至少放进(b+1)本书。 鸽巢原理(二):古国把多与kn个的物体任意分别放进n个空抽屉(k是正整数,n是非0的自然数),那么一定有一个抽屉中至少放进了(k+1)个物体。 三、巩

13、固新知,拓展应用1、完成教材第70页的“做一做”。 学生独立思考解答问题,集体交流、纠正。2、完成教材第71页练习十三的1-2题。 学生独立思考解答问题,集体交流、纠正。 四、课堂总结 1、通过今天的学习你有什么收获? 2、回归生活:你还能举出一些能用“鸽巢问题”解释的生活中的例子吗?五、作业个人调整意见教学反思:鱼岳镇第三小学电子教案 执教: 第2课时 时间:教学课题:“鸽巢问题”的具体应用 教学内容:教材第70页例3,及“做一做”,及第71页练习十三的3-4题。 三维目标:1、知识与技能:在了解简单的“鸽巢原理”的基础上,使学生学会用此原理解决简单的实际问题。 2、过程与方法:经历探究“鸽

14、巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。3、情感态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。 教学重点:引导学生把具体问题转化成“鸽巢问题”。教学难点:找出“鸽巢问题”中的“鸽巢”是什么,“鸽巢”有几个,在利用“鸽巢原理”进行反向推理。 教具准备:多媒体课件教学过程:一、创设情境、引入新课:师:一天晚上,有一个小女孩正要从抽屉里拿袜子。抽屉里有黑白两种颜色的袜子各10双。突然停电了。小女孩至少摸出多少只袜子,才能保证拿出相同颜色的袜子? 学生思考、发言。 师:学习了这节课我们就能解决类似的问题了。-出

15、示课题 二、合作交流,探究新知 (一)出示例3:盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定有2个同色的,至少要摸出几个球? 1、学生提出猜想。 2、用预先准备的学具,小组合作交流。3、小组反馈,师相机板书: 4、得出结论:把颜色看作抽屉。 有两种颜色,只要摸出的球比他们的颜色至少多1,就能保证有两个球同色。 (二)研究规律 师:如果盒子里有蓝、红、黄球各6个,从盒子里摸出两个同色的球,至少要摸出几个球? 分小组讨论后汇报。 再出示“做一做”第2题,汇报后得出:问题结论只与球的颜色种数也就是抽屉数有关。 小结:确定什么是抽屉什么是物体是解决抽屉问题的关键。 三、巩固新知,拓展应用1、第

16、70页“做一做”第1题。2、解决课前有趣的问题 3、有红色、白色、黑色的筷子各10根混放在一起,让你闭上眼睛去摸, (1)你至少要摸出几根才敢保证有两根筷子是同色的? (2)至少拿几根,才能保证有两双同色的筷子?为什么? 4、练习十三第3、4题。四、全课,畅谈收获 1、通过今天的学习你有什么收获? 2、回归生活:你还能举出一些能用抽屉原理解释的生活中的例子吗?五、作业个人调整意见教学反思:鱼岳镇第三小学电子教案 执教: 第3课时 时间:教学课题:“鸽巢原理”练习课 教学内容:教材71页练习十三的5、6题,及相关的练习题。三维目标:1、知识与技能:进一步熟知“鸽巢原理”的含义,会用“鸽巢原理”熟

17、练解决简单的实际问题。 2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。 3、情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。教学重点:应用“鸽巢原理”解决实际问题。引导学会把具体问题转化成“鸽巢问题”。教学难点:理解“鸽巢原理”,找出”鸽巢问题“解决的窍门进行反复推理。教具准备:多媒体课件。教学过程:一、谈话导入 -出示课题二、指导练习 (一)基础练习题 1、填一填: (1)鱼岳三小六年级有30名学生是二月份(按28天计算)出生的,六年级至少有( )名学生的生日是在二月份的同一

18、天。 (2)有3个同学一起练习投篮,如果他们一共投进16个球,那么一定有1个同学至少投进了( )个球。 (3)把6只鸡放进5个鸡笼,至少有( )只鸡要放进同1个鸡笼里。 (4)某班有个小书架,40个同学可以任意借阅,小书架上至少要有( )本书,才可以保证至少有1个同学能借到2本或2本以上的书。学生独立思考解答,集体交流纠正。 2、解决问题。 (1)(易错题)六(1)班有50名同学,至少有多少名同学是同一个月出生的? (2)书籍里混装着3本故事书和5本科技书,要保证一次一定能拿出2本科技书。一次至少要拿出多少本书? (3)把16支铅笔最多放入几个铅笔盒里,可以保证至少有1个铅笔盒里的铅笔不少于6

19、支? (二)拓展应用1、把27个球最多放在几个盒子里,可以保证至少有1个盒子里有7个球? 教师引导学生分析:盒子数看作抽屉数,如果要使其中1个抽屉里至少有7个球,那么球的个数至少要比抽屉数的(7-1)倍多1个,而(27-1)(7-1)=4.2,因此最多放进4个盒子里,可以保证至少有1个盒子里有7个球。 教师引导学生规范解答: 2、一个袋子里装有红、黄、蓝袜子各5只,一次至少取出多少只可以保证每种颜色至少有1只? 教师引导学生分析:假设先取5只,全是红的,不符合题意,要继续去;假设再取5只,5只有全是黄的,这时再取一只一定是蓝色的,这样取52+1=11(只)可以保证每种颜色至少有1只。 教师引导学生规范解答: 3、六(2)班的同学参加一次数学考试,满分为100分,全班最低分是75。已知每人得分都是整数,并且班上至少有3人的得分相同。六(2)班至少有多少名同学? 教师引导学生分析:因为最高分是100分,最低分是75分,所以学生可能得到的不同分数有100-745+1=26(种)。 教师引导学生规范解答: 三、巩固练习: 完成教材第71页练习十三的5、6题。(学生独立思考解答问题,集体交流、纠正。) 四、课堂总结 说说这节课你有什么收获?还有什么疑问,我们一起解决。五、作业个人调整意见教学反思:专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁