《初三数学几何提高训练专题(共10页).doc》由会员分享,可在线阅读,更多相关《初三数学几何提高训练专题(共10页).doc(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上提高训练专题1如图,已知菱形ABCD的对角线ACBD的长分别为6cm、8cm,AEBC于点E,则AE的长是()A. B. C. D. 2.如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A3B3.5C2.5D2.83.如图,将矩形纸片ABCD沿EF折叠,使点B与CD的中点重合,若AB=2,BC=3,则FCB与BDG的面积之比为A9:4 B3:2 C4:3 D16:94.如图,矩形ABCD边AD沿拆痕AE折叠,使点D落在BC上的F处,已知AB=6,ABF的面积是24,则FC等于()A.1 B.2 C
2、.3 D.45如图,将矩形ABCD沿CE折叠,点B恰好落在边AD的F处若,则tanDCF的值是 6.如图所示,矩形纸片中,现将其沿对折,使得点与点重合,则长为A. B. C. D. 1.如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,B=120,OA=2,将菱形OABC绕原点顺时针旋转105至OABC的位置,则点B的坐标为()A(,)B(,)C(-, )D(,)2.如图,在平面直角坐标系中,矩形OABC的对角线AC平行于x轴,边OA与x轴正半轴的夹角为30,OC=2,则点B的坐标是 3如图,点D是ABC的边AB的延长线上一点,点F是边BC上的一个动点(不与点B重合)以BD、BF为邻边作平
3、行四边形BDEF,又APBE(点P、E在直线AB的同侧),如果BD=AB,那么PBC的面积与ABC面积之比为()A B C D4.如图,正方形ABCD与正三角形AEF的顶点A重合,将AEF绕顶点A旋转,在旋转过程中,当BE=DF时,BAE的大小可以是 5如图,线段AC=n+1(其中n为正整数),点B在线段AC上,在线段AC同侧作正方形ABMN及正方形BCEF,连接AM、ME、EA得到AME当AB=1时,AME的面积记为S1;当AB=2时,AME的面积记为S2;当AB=3时,AME的面积记为S3;当AB=n时,AME的面积记为Sn当n2时,SnSn1=6如图,菱形ABCD和菱形ECGF的边长分别
4、为2和3,A=120,则图中阴影部分的面积是()A B2 C3 D1两块大小一样斜边为4且含有30角的三角板如图水平放置将CDE绕C点按逆时针方向旋转,当E点恰好落在AB上时,CDE旋转了 度,线段CE旋转过程中扫过的面积为2如图,线段AB的长为2,C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形ACD和BCE,那么DE长的最小值是 3如图,ABC为等边三角形,点E在BA的延长线上,点D在BC边上,且ED=EC若ABC的边长为4,AE=2,则BD的长为()A2B3CD+14.点P是正方形ABCD边AB上一点(不与A、B重合),连接PD并将线段PD绕点P顺时针旋转90,
5、得线段PE,连接BE,则CBE等于()A.75 B60 C45 D305如图,四边形ABCD中,BAD120,BD90,在BC、CD上分别找一点M、N,使AMN周长最小时,则AMNANM的度数为( ) A130 B120 C110 D1001如图,若AB是O的直径,CD是O的弦,ABD=55,则BCD的度数为()A35 B45 C55 D752.如图(4)所示,直线与线段为直径的圆相切于点,并交的延长线于点,且,点在切线上移动.当的度数最大时,则的度数为( )A. B. C. D. 3如图,双曲线y经过RtOMN斜边上的点A,与直角边MN相交于点B,已知OA2AN,OAB的面积为5,则k的值是
6、 4.如图,点A是反比例函数(x0)的图象上的一点,过点A作ABCD,使点B、C在x轴上,点D在y轴上,则ABCD的面积为()A1 B3 C6 D125.如图(5)所示,已知,为反比例函数图像上的两点,动点在正半轴上运动,当线段与线段之差达到最大时,点的坐标是( )A. B. C. D. 1如图,点A在双曲线y上,点B在双曲线y上,且ABx轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为 2如图,两个同心圆,大圆半径为5cm,小圆的半径为3cm,若大圆的弦AB与小圆相交,则弦AB的取值范围是 3如图,已知O是以坐标原点O为圆心,1为半径的圆,AOB45,点P在x轴上运动,若过点P且与O
7、A平行的直线与O有公共点,设P(x,0),则x的取值范围是 4如图,AB是O的直径,CD是O上一点,CDB=20,过点C作O的切线交AB的延长线于点E,则E等于()A40B50C60D705如图,M为双曲线y上的一点,过点M作x轴、y轴的垂线,分别交直线yxm于点D、C两点,若直线yxm与y轴交于点A,与x轴相交于点B,则ADBC的值为 1.观察数表根据表中数的排列规律,则B+D= 2.如图,在直角坐标系中,以原点O为圆心的同心圆的半径由内向外依次为1,2,3,4,同心圆与直线y=x和y=x分别交于A1,A2,A3,A4,则点A30的坐标是()A(30,30)B(8,8)C(4,4)D(4,4
8、)15如图1,l1,l2,l3,l4是一组平行线,相邻2条平行线间的距离都是1个单位长度,正方形ABCD的4个顶点A,B,C,D都在这些平行线上过点A作AFl3于点F,交l2于点H,过点C作CEl2于点E,交l3于点G(1)求证:ADFCBE; (2)求正方形ABCD的面积;(3)如图2,如果四条平行线不等距,相邻的两条平行线间的距离依次为h1,h2,h3,试用h1,h2,h3表示正方形ABCD的面积S16ABC中,AB=AC,D为BC的中点,以D为顶点作MDN=B(1)如图(1)当射线DN经过点A时,DM交AC边于点E,不添加辅助线,写出图中所有与ADE相似的三角形(2)如图(2),将MDN
9、绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论(3)在图(2)中,若AB=AC=10,BC=12,当DEF的面积等于ABC的面积的时,求线段EF的长17如图,抛物线y=ax2+bx+2交x轴于A(1,0),B(4,0)两点,交y轴于点C,与过点C且平行于x轴的直线交于另一点D,点P是抛物线上一动点(1)求抛物线解析式及点D坐标; (2)点E在x轴上,若以A,E,D,P为顶点的四边形是平行四边形,求此时点P的坐标;(3)过点P作直线CD的垂线,垂足为Q,若将CPQ沿CP翻折,点Q的对应点为Q是否存在点P
10、,使Q恰好落在x轴上?若存在,求出此时点P的坐标;若不存在,说明理由18如图,在矩形纸片ABCD中,AB=6,BC=8把BCD沿对角线BD折叠,使点C落在C处,BC交AD于点G;E、F分别是CD和BD上的点,线段EF交AD于点H,把FDE沿EF折叠,使点D落在D处,点D恰好与点A重合(1)求证:ABGCDG;(2)求tanABG的值;(3)求EF的长19.已知四边形ABCD是正方形,O为正方形对角线的交点,一动点P从B开始,沿射线BC运到,连结DP,作CNDP于点M,且交直线AB于点N,连结OP,ON。(当P在线段BC上时,如图9:当P在BC的延长线上时,如图10) (1)请从图9,图10中任
11、选一图证明下面结论:BN=CP: OP=ON,且OPON (2) 设AB=4,BP=,试确定以O、P、B、N为顶点的四边形的面积与的函数关系。27已知梯形ABCD,ADBC,ABBC,AD1,AB2,BC3(1)如图1,P为AB边上的一点,以PD、PC为边作PCQD,请问对角线PQ,DC的长能否相等,为什么?(2)如图2,若P为AB边上一点,以PD,PC为边作PCQD,请问对角线PQ的长是否存在最小值?如果存在,请求出最小值,如果不存在,请说明理由(3)若P为AB边上任意一点,延长PD到E,使DEPD,再以PE、PC为边作PCQE,请探究对角线PQ的长是否也存在最小值?如果存在,请求出最小值,
12、如果不存在,请说明理由(4)如图3,若P为DC边上任意一点,延长PA到E,使AEnPA(n为常数),以PE、PB为边作PBQE,请探究对角线PQ的长是否也存在最小值?如果存在,请求出最小值,如果不存在,请说明理由23、 如图8,已知AB=AC,BAC=120,在BC上取一点O,以O为圆心OB为半径作圆,且O过A点,过A作ADBC交O于D,求证:(1)AC是O的切线; (2)四边形BOAD是菱形。23.某楼盘一楼是车库(暂不销售),二楼至二十三楼均为商品房(对外销售).商品房售价方案如下:第八层售价为3000元/米2,从第八层起每上升一层,每平方米的售价增加40元;反之,楼层每下降一层,每平方米
13、的售价减少20元.已知商品房每套面积均为120平方米.开发商为购买者制定了两种购房方案:方案一:购买者先交纳首付金额(商品房总价的30),再办理分期付款(即贷款).方案二:购买者若一次付清所有房款,则享受8的优惠,并免收五年物业管理费(已知每月物业管理费为a元)(1)请写出每平方米售价(元/米2)与楼层(223,是正整数)之间的函数解析式;(2)小张已筹到元,若用方案一购房,他可以购买哪些楼层的商品房呢?(3)有人建议老王使用方案二购买第十六层,但他认为此方案还不如不免收物业管理费而直接享受9的优惠划算.你认为老王的说法一定正确吗?请用具体的数据阐明你的看法。28如图,RtABO的两直角边OA
14、、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(3,0)、(0,4),抛物线yx2bxc经过点B,且顶点在直线x上(1)求抛物线对应的函数关系式;(2)若把ABO沿x轴向右平移得到DCE,点A、B、O的对应点分别是D、C、E,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)在(2)的条件下,连接BD,已知对称轴上存在一点P使得PBD的周长最小,求出P点的坐标;(4)在(2)、(3)的条件下,若点M是线段OB上的一个动点(点M与点O、B不重合),过点M作BD交x轴于点N,连接PM、PN,设OM的长为t,PMN的面积为S,求S和t的函数
15、关系式,并写出自变量t的取值范围,S是否存在最大值?若存在,求出最大值和此时M点的坐标;若不存在,说明理由24如图,抛物线y=x2x9与x轴交于A、B两点,与y轴交于点C,连接BC、AC(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D设AE的长为m,ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(3)在(2)的条件下,连接CE,求CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留)24如图,已知抛物线经过点A(1,0)、B(3,0)、C(0,3)三点(1)求抛物线的解析式(
16、2)点M是线段BC上的点(不与B,C重合),过M作MNy轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长(3)在(2)的条件下,连接NB、NC,是否存在m,使BNC的面积最大?若存在,求m的值;若不存在,说明理由24如图,已知抛物线y=x2+bx+c与一直线相交于A(1,0),C(2,3)两点,与y轴交于点N其顶点为D(1)抛物线及直线AC的函数关系式;(2)设点M(3,m),求使MN+MD的值最小时m的值;(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EFBD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不
17、能,请说明理由;(4)若P是抛物线上位于直线AC上方的一个动点,求APC的面积的最大值26综合与实践:如图,在平面直角坐标系中,抛物线y=x2+2x+3与x轴交于AB两点,与y轴交于点C,点D是该抛物线的顶点(1)求直线AC的解析式及BD两点的坐标;(2)点P是x轴上一个动点,过P作直线lAC交抛物线于点Q,试探究:随着P点的运动,在抛物线上是否存在点Q,使以点AP、Q、C为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q的坐标;若不存在,请说明理由(3)请在直线AC上找一点M,使BDM的周长最小,求出M点的坐标27已知抛物线yax2bxc经过A(1,0)、B(3,0)、C(0,3)
18、三点,直线l是抛物线的对称轴(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由23如图,已知点C是以AB为直径的O上一点,CHAB于点H,过点B作O的切线交直线AC于点D,点E为CH的中点,连接AE并延长交BD于点F,直线CF交AB的延长线于G(1)求证:AEFD=AFEC;(2)求证:FC=FB;(3)若FB=FE=2,求O的半径r的长24在平面直角坐标xOy中,(如图)正方形OABC的边长为4,边OA在x轴的正半轴上,边OC在y轴
19、的正半轴上,点D是OC的中点,BEDB交x轴于点E(1)求经过点D、B、E的抛物线的解析式;(2)将DBE绕点B旋转一定的角度后,边BE交线段OA于点F,边BD交y轴于点G,交(1)中的抛物线于M(不与点B重合),如果点M的横坐标为,那么结论OF=DG能成立吗?请说明理由;(3)过(2)中的点F的直线交射线CB于点P,交(1)中的抛物线在第一象限的部分于点Q,且使PFE为等腰三角形,求Q点的坐标如图,在平面直角坐标系中,直线交轴于点,交轴于点,抛物线的图象过点,并与直线相交于、两点. 求抛物线的解析式(关系式); 过点作交轴于点,求点的坐标; 除点外,在坐标轴上是否存在点,使得是直角三角形?若
20、存在,请求出点的坐标,若不存在,请说明理由.28如图1,在平面直角坐标系中,矩形OABC的顶点O在坐标原点,顶点A、C分别在x轴、y轴的正半轴上,且OA2,OC1,矩形对角线AC、OB相交于E,过点E的直线与边OA、BC分别相交于点G、H(1)直接写出点E的坐标: ;求证:AGCH(2)如图2,以O为圆心,OC为半径的圆弧交OA与D,若直线GH与弧CD所在的圆相切于矩形内一点F,求直线GH的函数关系式(3)在(2)的结论下,梯形ABHG的内部有一点P,当P与HG、GA、AB都相切时,求P的半径29如图,半径为2的C与x轴的正半轴交于点A,与y轴的正半轴交于点B,点C的坐标为(1,0)若抛物线过A、B两点(1)求抛物线的解析式;(2)在抛物线上是否存在点P,使得PBO=POB?若存在,求出点P的坐标;若不存在说明理由;(3)若点M是抛物线(在第一象限内的部分)上一点,MAB的面积为S,求S的最大(小)值专心-专注-专业