《公务员考试行测数量关系各类题型(共10页).doc》由会员分享,可在线阅读,更多相关《公务员考试行测数量关系各类题型(共10页).doc(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上例2:某高校对一些学生进行问卷调查。在接受调查的学生中,准备参加注册会计师考试的有63人,准备参加英语六级考试的有89人,准备参加计算机考试的有47人,三种考试都准备参加的有24人,至少准备选择参加两种考试的有46人,不参加其中任何一种考试的有15人。问接受调查的学生共有多少人?A.120 B.144 C.177 D.192【中公解析】此题与第一题的区别在于所给条件多出两个字变为“至少准备选择参加两种考试的有46人”虽然只多出了至少两个字,但是它代表的含义就有所不同。至少准备选择参加两种考试的有46人表示的是参加两种考试和参加三种考试的人数之和,即文氏图中两层和三层之
2、和,所以减去46后,两层减了一次,三层也减了一次,因此三层只需再减一次就够了。所以列示就应该是63+89+47-46-124+15=144,选B。例3:某高校对一些学生进行问卷调查。在接受调查的学生中,准备参加注册会计师考试的有63人,准备参加英语六级考试的有89人,准备参加计算机考试的有47人,三种考试都准备参加的有24人,准备选择参加注册会计师考试和英语六级考试的有16人,准备参加英语六级考试和计算机考试的有13人,准备参加计算机考试和注册会计师考试的有17人,不参加其中任何一种考试的有15人。问接受调查的学生共有多少人?A.120 B.144 C.177 D.192【中公解析】此题将“准
3、备选择参加两种考试的有46人”条件改为“准备选择参加注册会计师考试和英语六级考试的有16人,准备参加英语六级考试和计算机考试的有13人,准备参加计算机考试和注册会计师考试的有17人”,这三个数值代表的是文氏图中两个圆相交的区域,每一个相交的区域都包含一遍三层的区域。所以它们加起来的代表的两层的区域之和以及三遍三层的区域,所以减去这三个数之和需要加上三层的一遍,列示应该是63+89+47-16-13-17+24+15=,选D。例4:某高校对一些学生进行问卷调查。在接受调查的学生中,准备参加注册会计师考试的有63人,准备参加英语六级考试的有89人,准备参加计算机考试的有47人,三种考试都准备参加的
4、有24人,仅准备选择参加注册会计师考试和英语六级考试的有16人,仅准备参加英语六级考试和计算机考试的有13人,仅准备参加计算机考试和注册会计师考试的有17人,不参加其中任何一种考试的有15人。问接受调查的学生共有多少人?A.120 B.144 C.177 D.192【中公解析】此题描述的是“仅准备选择参加注册会计师考试和英语六级考试的有16人,仅准备参加英语六级考试和计算机考试的有13人,仅准备参加计算机考试和注册会计师考试的有17人”,多了一“仅”字,那么这三个数值代表的是文氏图中三个两层的区域。它们加起来的和正好是代表的两层的区域之和,所以减去这三个数之和需要减去三层的两遍,列示应该是63
5、+89+47-16-13-17-224+15=120,选A。2016国考行测备考:由“鸡兔同笼”问题学母题思想【母题】有鸡和兔子放在同一个笼子里,数数头一共有10个,数数脚一共有26只,问鸡和兔子各有几只?中公解析:假设10个头全部为鸡的头,每只鸡有两只脚,所以一共应有20只脚,事实上一共有26只脚,故少算了6只脚。之所以少算是因为把一部分的兔子假设成鸡了,而一只兔子假设成一只鸡就少算2只脚,故少算的6只脚是3只兔子给少的,因此兔子有3只,鸡有7只。【变式一】小明去参加数学竞赛考试,一共回答了20道题。已知答对一题得3分,答错一题扣1分。考试结束,小明一共得了40分,问小明答对了几道题?中公解
6、析:题目很容易判断为鸡兔同笼问题,答对的题目是“鸡”,答错的题目是“兔子”。假设20道题均答对,每道题得3分,则小明应该得60分,事实上小明只得了40分,所以多算了20分,之所以多算是因为把答错的题目当成了答对的题目,而一道题目答对与答错里外里差4分,故20分是5道题给差出来的。所以,小明答错了5道题,答对了15道题【变式二】小王培育1000亩树苗,培育成功一亩可以赚2元,培育失败一亩不仅不赚还要倒赔2元,所有树苗培育完成后,小王一共得到1600元。问小王培育成功多少亩树苗?中公解析:题目为鸡兔同笼问题,培育成功的树苗为“鸡”,培育失败的树苗为“兔子”。假设1000亩树苗均培育成功,每亩赚2元
7、,则小王可以赚2000元,事实上小王只得到了1600元,所以多算了400元。之所以多算是因为把培育失败的树苗当成了培育成功的树苗,而树苗培育成功与失败里外里差4元,故400元是100亩树苗给差出来的。所以小王培育失败了100亩树苗,成功了900亩树苗。【变式三】有甲乙两个教室,每个教室均有5排座位,甲教室每排可以坐10人,乙教室每排可以坐9人。已知当月在两个教室一共举办讲座27场,场场座无虚席,共培训1290人,请问在甲教室举办了几场讲座?中公解析:题目为鸡兔同笼问题,甲教室为“鸡”,乙教室为“兔子”。假设27场讲座均在甲教室举办的,甲教室每排坐10人,有5排,故每场讲座可以容纳50人,则27
8、场讲座一共可以培训1350人,事实上只培训了1290人,所以多算了60人。之所以多算是因为把在乙教室培训的当成了在甲教室培训,一场在乙办的讲座与在甲办的,里外里差5人,故60人是12场讲座差出来的,所以在乙教室培训了12场,甲教室培训了15场。2016国家公务员考试行测数量关系提分技能之合作交替问题例如:一个人从甲到乙的平均速度为4,从乙返回甲的平均速度为6,请问从甲到乙然后从乙返回甲这整个过程中的平均速度为多少?中公解析:想求整个过程的平均速度,应该用总路程除以总时间,但是总路程和总时间题目没有说明,而且题干对于路程是多少没有任何的限制,所以可以认为路程是具有任意性的,所以我们可以将从甲到乙
9、的路程设为12,这样就可以求出从甲到乙所需要的时间为124=3,从乙返回甲所需要的时间为126=2,所以整个过程的平均速度为24(3+2)=4.8。例题1. 单独完成某项工作,甲需要16个小时,乙需要12个小时,如果按照甲、乙的顺序轮流工作,每次1小时,那么完成这项工作需要多长时间?A.l3小时40分钟 B.13小时45分钟 C.l3小时50分钟 D.14小时中公解析:答案选B。首先要想到用特值思想,设总工程量为48,则甲的效率是3,乙的效率是4,把甲乙各工作一小时看成一个周期,则每个周期2小时可完成工作量7,则工作12小时后,完成了42。第13小时甲做了3,完成了总工程量的45,剩余的3由乙
10、在第14小时完成。在第14小时里,乙所用的时间是3/4小时,所以总时间是13.75小时。例题2. 一条隧道,甲单独挖要20天完成,乙单独挖要10天完成。如果甲先挖1天,然后乙接替甲挖1天,再由甲接替乙挖1天两人如此交替工作。那么,挖完这条隧道共用多少天?A.14 B.16 C.15 D.13中公解析:答案选A。设隧道工作量为20,则甲、乙的效率(每天完成的工作量)分别为1、2,两人各干1天完成1+2=3。20=36+1+1,即甲、乙先各干6天,然后甲干1天,剩下的工程量为1,由乙半天完成,因此总的工作时间为62+1+1=14天,选A。2016国考行测备考:分分钟搞定抽屉原理问题如:从一副扑克牌
11、中,至少抽多少张才能保证有2张牌花色相同?这就是一道简单的抽屉原理问题。典型的问法:“至少,才能保证”,如从一副扑克牌中,至少抽多少张才能保证有2张牌花色相同?此时考虑最差的情况,一副扑克牌共有4种花色,考虑最差情况,每一种花色抽出来一张,即4张,那此时思考,从剩下的牌中任意抽一张就能满足2张牌花色相同吗?显然不能,因为实际中,扑克牌中还有2张大小王,所以此题最差的情况应该是每一种花色只摸一张,接着大小王被抽出,那么最后再从剩下的牌中任意摸一张,即可保证有2张牌花色相同,即结果为41+2+1=7张。例1:有白色手套20只,黑色手套16只,灰色手套14只,大小相同,在黑暗中至少摸出几只就能保证至
12、少摸出5双手套(两只同色手套为一双)。A.11 B.12 C.13 D.14答案:B中公解析:最差原则。42+3+1=12只。(要想保证摸出5双手套,考虑最差的情况,只摸出4双手套,偏偏不摸第5双手套,此时恰好摸出4双手套,然后每个颜色再摸出一只,最后再任意摸一只就能保证至少摸出5双手套。)例2:在一只暗箱里有黑色的小球30只,白色的小球22只,蓝色的小球18只,大小都一样,每摸出2个同色小球奖励1分,从暗箱中至少摸出( )只小球才能保证至少得10分。A.30 B.18 C.20 D.22答案:D中公解析:92+3+1=22只。(至少得10分,即至少需要摸出10对同色小球,考虑最差情况,先摸出
13、9对同色球,偏偏不摸第10对同色小球,接着每个颜色各摸出一只,最后任意摸一只即可。)例1.已知盐水若干千克,第一次加入一定量的水后,盐水浓度变为6%,第二次加入同样多的水后,盐水浓度变为4%,问:第三次再加入同样多的水后盐水浓度是多少?A.3% B.2.5% C.2% D.1.8%答案:A。中公解析:此题在加水的过程中溶液中的盐是永远不变的,所以把盐的质量设为特值,设任意特值均可,为了方便计算设为6和4的最小公倍数12。当盐的质量为12,第一次加入水的时候溶液的浓度为6%,可以得出溶液的质量为200;第二次加入水后浓度为4%,可以得出溶液质量为300,溶液前后增加了100,增加的量为每次加入的
14、水量。第三次再加入质量为100的水,溶液质量变为400,溶质盐的质量为12,则浓度为12400=3%。例3.今年苹果的成本比去年增加了20%,导致每斤苹果的利润下降了10%,但是今年的销量比去年增加了50%,问:今年销售苹果的总利润比去年增加了多少?A.35% B.25% C.20% D.15%答案:A。中公解析:题干中出现单个利润的前后变化,则设原来每斤苹果的利润为10,销量为10,则现在每斤苹果的利润为9,销量为15,可得原来总利润=1010=100,现在总例4.一批商品按期望获得50%的利润来定价,结果只销掉70%的商品,为尽早销售掉剩下的商品,商店决定按定价打折出售,这样所获得的全部利
15、润是原来所期望利润的82%,问打了多少折扣?A.4折 B.6折 C.7折 D.8折答案:D。中公解析:设这批商品单个成本为100,销量100,折扣为X,实际利润=5070+30 (150X-100),期望利润=50100,5070+30 (150X-100)=82%50100,解得X=80%,选D.公务员考试行测速解技巧之最不利原则例2、有一排长椅总共有65个座位,其中已经有些座位上有人就坐。现在又有一人准备找一个位置就坐,但是此人发现,无论怎么选择座位,都会与已经就坐的人相邻。问原来至少已经有多少人就坐?( )A.13 B.17 C.22 D.33【中公解析】答案选C。题目的问题可以转化为至
16、少有多少人就坐,才能保证无论怎么选择座位,都会与已经就坐的人相邻。根据问法应该让就做的人尽量少,假设A代表有人入座,B代表空座,则最坏的情况是B A B B A,显然这样不管坐在哪个空位上,都会与别人相邻,继续往后面排位B A B B A B B A B .,3个一个循环,653=212。最后一个循环和余数入座情况为 B A B B B。显然后两个作为必须有一个人就座。所以最好就座的人数为22人。选择C。例3、箱子里有大小相同的3种颜色玻璃珠各若干个,每次从中摸出3颗为一组,问至少要摸出多少组,才能保证至少有2组玻璃球的颜色组合是一样的?A. 11 B. 15 C. 18 D. 21【中公解析
17、】答案选A。要保证有两组玻璃球的颜色是一样的,最坏的情况是每组求的颜色都不一样,所以只要理清一共有多少种颜色组合就行了,假设三种颜色分别是A、B、C。若三种球颜色一样有三种组合(AAA、BBB、CCC),如果三种球有两种颜色,共有六种组合(AAB、AAC、BBA、BBC、CCA、CCB),若三种球有三种颜色,则只有一种组合(ABC)。所以不同的组合一共有10种,那么至少要摸11颗球才能保证有两组球颜色组合一样,答案选择A。2016国家公务员考试行速解技巧之十字交叉法2016国家公务员考试行测备考:工程问题之多者合作两者或者两者以上的合作,关键点是合作时总效率等于各部分的效率之和。解题步骤仍然较
18、为固定,一般而言分为三步:(1)设工作总量为特值(完成工作所需时间或工作效率的最小公倍数);(2)求各自的效率或者时间;(3)求题目所问。【例1】同时打开游泳池的A,B两个进水管,加满水需1小时30分钟,且A管比B管多进水180立方米,若单独打开A管,加满水需2小时40分钟,则B管每分钟进水多少立方米?( )A、6 B、7 C、8 D、9【答案】B。【中公解析】根据解题步骤:(1)设工作总量为完成工作所需时间的最小公倍数,A、B管加满水需要90分钟,A管加满水需160分钟,因此把水量设为1440份。(2)根据工作总量=工作效率工作时间,分别求出A、B工作效率:A和B管每分钟进水量=16份,A每
19、分钟进水量=9份,因此B每分钟进水量=7份。(3)求题目所问。由于B效率为7份,因此B管每分钟的进水量必定是7的倍数,四个选项,只有B选项是7的倍数,因此可直接选出B选项。或者(9-7)份90=180,1份=1立方米,则B每分钟进水为7立方米,故答案选B。【例2】有A和B两个公司想承包某项工程。A公司需要300天才能完工,费用为1.5万元/天。B公司需要200天就能完工,费用为3万元/天。综合考虑时间和费用等问题,在A公司开工50天后,B公司才加入工程。按以上方案,该项工程的费用为多少?A、475万元 B、500万元 C、615万元 D、525万元【答案】D。【中公解析】解题步骤:设工作总量为
20、600,则A公司的效率为2,B公司的效率为3,A公司开工50天后,完成的工作量为502=100,剩余工作量为500,两公司合作需要500(2+3)=100天,故总费用=1501.5+1003=525万元。因此,本题答案为D选项。【例3】某工程项目,由甲项目公司单独做,需4天才能完成,由乙项目公司单独做,需6天才能完成,甲、乙、丙三个公司共同做2天就可完成,现因交工日期在即,需多公司合作,但甲公司因故退出,则由乙、丙公司合作完成此项目共需多少天?A.3 B.4 C.5 D.6【答案】B。【中公解析】根据解题步骤:(1)设工作总量为完成工作所需时间的最小公倍数,即工作总量为12份。(2)分别求出甲
21、、乙、丙三者的工作效率:甲工作效率为3份,乙工作效率为2份,甲、乙、丙在三者的工作效率和为6份,则可以求出丙工作效率为1份。(3)求题目所问。乙和丙两者的工作效率和为3份,则12/3=4,则乙、丙公司合作完成此项目共需4天。2016国家公务员考试行测备考:工程问题三大技巧一、多者合作型例1、同时打开游泳池的A、B两个进水管,加满水需1小时30分钟,且A管比B管多进水180立方米,若单独打开A管,加满水需2小时40分钟,则B管每分钟进水多少立方米?()(2011年国家公务员考试行测试卷第77题)A、6B、7C、8D、9答案:B。中公解析:套用工程类问题的解题步骤:(1)设工作总量为完成工作所需时
22、间的最小公倍数,A、B管加满水需要90分钟,A管加满水需160分钟,因此把水量设为1440份。(2)分别求出A、B工作效率:A、B管每分钟进水量=16份,A每分钟进水量=9份,因此B每分钟进水量=7份。(3)求题目所问。由于B效率为7份,因此B管每分钟的进水量必定是7的倍数,四个选项,只有B选项是7的倍数,因此可直接选出B选项。二、交替合作型例2、一条隧道,甲用20天的时间可以挖完,乙用10天的时间可以挖完,现在按照甲挖一天,乙再接替甲挖一天,然后甲再接替乙挖一天如此循环,挖完整个隧道需要多少天?()(2009年国家公务员考试行测试卷第110题)A、14B、16C、15D、13答案:A。中公解
23、析:套用工程类问题的解题步骤:(1)设工作总量为完成工作所需时间的最小公倍数,甲、乙完成工作各需20天、10天,因此设工作总量为20。(2)分别求出甲、乙工作效率:甲效率=1,乙效率=2。(3)求题目所问。题目要求让甲、乙轮流挖,一个循环(甲乙两人各挖1天)共完成工作量1+2=3。如此6个循环后可以完成工作量18,还剩余2,需要甲挖1天,乙挖半天。因此一共需要时间62+1+1=14(天)。三、两项工程型例3、甲、乙、丙三个工程队的效率比为6:5:4,现将A、B两项工作量相同的工程交给这三个工程队,甲队负责A工程,乙队负责B工程,丙队参与A工程若干天后转而参与B工程。两项工程同时开工,耗时16天
24、同时结束,问丙队在A工程中参与施工多少天?()A、6B、7C、8D、9答案:A。中公解析:由于这道题直接告诉了甲、乙、丙的效率比,因此直接设甲、乙、丙的效率比为6、5、4,设丙在A工程工作x天,则有方程616+4x=516+4(16-x),求出x=62016国家公务员考试行测运算题速解之运用正反比一、正反比的应用环境当三个量存在乘积等式的关系的时候,这三个量具有正反比的关系。以行程问题的最基本的公式S=Vt为例:S一定,那么V和t成反比;V一定,那么S和t成正比;t一定,那么S和V成正比。所以,必须三个量中某一个量为定值,才可以用正反比关系来解题。二、例题示范1.建筑队计划150天建好大楼,按
25、此效率工作30天后由于购买新型设备,工作效率提高20%,则大楼可以提前()天完工。A.20 B.25 C.30 D.45中公解析:选A。工作效率提高20%,原效率与现在效率之比1:1.2=5:6,工作总量不变,那么工作时间与效率成反比,原时间与现在时间之比为6:5,那么6份对应120天,则1份=20天,大楼可以提前1份完工,即提前20天完工,选择答案A。2.甲地到乙地,步行比骑车速度慢75%,骑车比公交慢50%,如果一个人坐公交从甲地到乙地,再从乙地步行到甲地,共用1个半小时。问:骑车从甲地到乙地多长时间?A.10分钟 B.20分钟 C.30分钟 D.40分钟中公解析:选B。由题意可得步行的速
26、度骑车的速度=14,骑车的速度公交的速度=12,故步行的速度骑车的速度公交的速度=148,根据路程相同,时间与速度成反比,可知步行的时间骑车的时间公交的时间=821。已知“一个人坐公交从甲地到乙地,再从乙地步行到甲地,共用1个半小时”,可得9份为90分钟,1份为10分钟,骑车从甲地到乙地需2份时间,则为20分钟。选择答案B3.李明倡导低碳出行,每天骑自行车上下班,如果他每小时的车速比原来快3千米,他上班在途中的时间只需原来时间的4/5;如果他每小时的车速比原来慢3千米,那么他上班的在途时间就比原来的时间多( )。A.1/3 B.1/4 C.1/5 D.1/6中公解析:选A。提速后时间与原来的时
27、间之比是4:5,则提速后的速度与原速度之比为5:4可知提高的1份速度对应3千米/小时,则原速度4份对应12千米/小时。减速后速度与原速度之比为9:12=3:4,时间之比为4:3时,比原来的时间多1/3。选择答案A。例题1:某农场有36台收割机,要收割完所有的麦子需要14天时间。现收割了7天后增加4台收割机,并通过技术改造使每台机器的效率提升5%,问收割完所有的麦子还需要几天?【2015-国考-61】A. 3 B. 4 C. 5 D. 6【中公解析】此题可以使用特值法,设每台收割机每天的工作效率为1,则工作总量为3614=504,已完成工作367=252,剩下的工作总量为504-252=252,
28、由36+4=40台收割机完成,每台收割机效率为1.05,故剩下需要的时间为252(401.05)=6天,故答案选D。例题2:小李的弟弟比小李小2岁,小王的哥哥比小王大2岁、比小李大5岁。1994年,小李的弟弟和小王的年龄之和为15。问2014年小李与小王的年龄分别为多少岁?【2015-国考-66】A. 25,32 B. 27,30 C. 30,27 D. 32,25【中公解析】此题可根据题中已知条件“小王的哥哥比小王大2岁,比小李大5岁”可知小王比小李大3岁,从选项可判断,只有B选项符合,故答案选B。备考要点三:题型综合性加强是备考难点例题3:某单位有50人,男女性别比为3:2,其中有15人未入党,如从中任选1人,则此人为男性党员的概率最大为多少?【2015-国考-62】A. 3/5 B. 2/3 C. 3/4 D. 5/7【中公解析】根据题意可知某单位共有男生30人,女生20人,要求随机抽出1人,满足此人为男性党员的概率最大,即可使未入党的15人均为女性,故最大概率为30/50=3/5,故答案选A,相对于传统概率题而言,此题难点在于如何使得男性概率最大的条件成立,而不是单纯计算概率。专心-专注-专业