《抛物线专题复习讲义及练习(答案)(共6页).doc》由会员分享,可在线阅读,更多相关《抛物线专题复习讲义及练习(答案)(共6页).doc(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上抛物线1.抛物线的标准方程、类型及其几何性质 ():2.抛物线的焦半径、焦点弦的焦半径;的焦半径; 过焦点的所有弦中最短的弦,也被称做通径.其长度为2p. AB为抛物线的焦点弦,则 ,=考点1 抛物线的定义题型 利用定义,实现抛物线上的点到焦点的距离与到准线的距离之间的转换例1 已知点P在抛物线y2 = 4x上,那么点P到点Q(2,1)的距离与点P到抛物线焦点距离之和的最小值为 【解题思路】将点P到焦点的距离转化为点P到准线的距离解析过点P作准线的垂线交准线于点R,由抛物线的定义知,当P点为抛物线与垂线的交点时,取得最小值,最小值为点Q到准线的距离 ,因准线方程为x=
2、-1,故最小值为3【名师指引】灵活利用抛物线的定义,就是实现抛物线上的点到焦点的距离与到准线的距离之间的转换,一般来说,用定义问题都与焦半径问题相关【新题导练】1.已知抛物线的焦点为,点,在抛物线上,且、成等差数列, 则有 ()A B C D. 解析C 由抛物线定义,即: 2. 已知点F是抛物线的焦点,M是抛物线上的动点,当最小时, M点坐标是 ( )A. B. C. D. 解析 设M到准线的距离为,则,当最小时,M点坐标是,选C考点2 抛物线的标准方程题型:求抛物线的标准方程例2 求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程:(1)过点(-3,2) (2)焦点在直线上【解题思路
3、】以方程的观点看待问题,并注意开口方向的讨论.解析 (1)设所求的抛物线的方程为或, 过点(-3,2) 抛物线方程为或,前者的准线方程是后者的准线方程为 (2)令得,令得, 抛物线的焦点为(4,0)或(0,-2),当焦点为(4,0)时, ,此时抛物线方程;焦点为(0,-2)时 ,此时抛物线方程. 所求抛物线方程为或,对应的准线方程分别是.【名师指引】对开口方向要特别小心,考虑问题要全面【新题导练】3.若抛物线的焦点与双曲线的右焦点重合,则的值 解析4. 若抛物线的顶点在原点,开口向上,F为焦点,M为准线与Y轴的交点,A为抛物线上一点,且,求此抛物线的方程解析 设点是点在准线上的射影,则,由勾股
4、定理知,点A的横坐标为,代入方程得或4,抛物线的方程或考点3 抛物线的几何性质题型:有关焦半径和焦点弦的计算与论证例3 设A、B为抛物线上的点,且(O为原点),则直线AB必过的定点坐标为_.【解题思路】由特殊入手,先探求定点位置解析设直线OA方程为,由解出A点坐标为解出B点坐标为,直线AB方程为,令得,直线AB必过的定点【名师指引】(1)由于是填空题,可取两特殊直线AB, 求交点即可;(2)B点坐标可由A点坐标用换k而得。【新题导练】6. 若直线经过抛物线的焦点,则实数 解析-17.过抛物线焦点F的直线与抛物线交于两点A、B,若A、B在抛物线准线上的射影为,则 ( ) A. B. C. D.
5、解析C基础巩固训练1.过抛物线的焦点作一条直线与抛物线相交于A、B两点,它们的横坐标之和等于,则这样的直线( )A.有且仅有一条 B.有且仅有两条 C.1条或2条 D.不存在解析C ,而通径的长为42.在平面直角坐标系中,若抛物线上的点到该抛物线焦点的距离为5,则点P的纵坐标为()A. 3 B. 4 C. 5 D. 6解析 B 利用抛物线的定义,点P到准线的距离为5,故点P的纵坐标为43.两个正数a、b的等差中项是,一个等比中项是,且则抛物线的焦点坐标为( ) A B C D解析 D. 4. 如果,是抛物线上的点,它们的横坐标依次为,F是抛物线的焦点,若成等差数列且,则=( )A5 B6 C
6、7 D9 解析B 根据抛物线的定义,可知(,2,n),成等差数列且,=65、抛物线准线为l,l与x轴相交于点E,过F且倾斜角等于60的直线与抛物线在x轴上方的部分相交于点A,ABl,垂足为B,则四边形ABEF的面积等于( )A B C D解析 C. 过A作x轴的垂线交x轴于点H,设,则,四边形ABEF的面积=6、设是坐标原点,是抛物线的焦点,是抛物线上的一点,与轴正向的夹角为,则为 解析. 过A 作轴于D,令,则即,解得综合提高训练7.在抛物线上求一点,使该点到直线的距离为最短,求该点的坐标解析解法1:设抛物线上的点,点到直线的距离,当且仅当时取等号,故所求的点为解法2:当平行于直线且与抛物线
7、相切的直线与抛物线的公共点为所求,设该直线方程为,代入抛物线方程得,由得,故所求的点为8. 已知抛物线(为非零常数)的焦点为,点为抛物线上一个动点,过点且与抛物线相切的直线记为(1)求的坐标;(2)当点在何处时,点到直线的距离最小?解:(1)抛物线方程为 故焦点的坐标为 (2)设 直线的方程是 9. 设抛物线()的焦点为 F,经过点 F的直线交抛物线于A、B两点点 C在抛物线的准线上,且BCX轴证明直线AC经过原点O证明:因为抛物线()的焦点为,所以经过点F的直线AB的方程可设为 ,代人抛物线方程得 若记,则是该方程的两个根,所以因为BCX轴,且点C在准线上,所以点C的坐标为,故直线CO的斜率为即也是直线OA的斜率,所以直线AC经过原点O10.椭圆上有一点M(-4,)在抛物线(p0)的准线l上,抛物线的焦点也是椭圆焦点.(1)求椭圆方程;(2)若点N在抛物线上,过N作准线l的垂线,垂足为Q距离,求|MN|+|NQ|的最小值.解:(1)上的点M在抛物线(p0)的准线l上,抛物线的焦点也是椭圆焦点.c=-4,p=8M(-4,)在椭圆上由解得:a=5、b=3椭圆为由p=8得抛物线为设椭圆焦点为F(4,0),由椭圆定义得|NQ|=|NF|MN|+|NQ|MN|+|NF|=|MF|=,即为所求的最小值.专心-专注-专业