初中数学公式定理总结(共12页).doc

上传人:飞****2 文档编号:13288704 上传时间:2022-04-28 格式:DOC 页数:12 大小:507KB
返回 下载 相关 举报
初中数学公式定理总结(共12页).doc_第1页
第1页 / 共12页
初中数学公式定理总结(共12页).doc_第2页
第2页 / 共12页
点击查看更多>>
资源描述

《初中数学公式定理总结(共12页).doc》由会员分享,可在线阅读,更多相关《初中数学公式定理总结(共12页).doc(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上中考数学常用公式定理一、数与代数1、整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数如:3,0.231,0.,无限不环循小数叫做无理数如:,0.(两个1之间依次多1个0)有理数和无理数统称为实数2、绝对值:a0丨a丨a;a0丨a丨a如:丨丨;丨3.14丨3.143、一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字如:0.05972精确到0.001得0.060,结果有两个有效数字6,0特别提醒:3.24万精确到百位,而不是百分位,有3个有效数字3,2,4. 又:精确到千位,有3个有效数字5,

2、1,74、把一个数写成a10n的形式(其中1a10,n是整数),这种记数法叫做科学记数法如:407004.07105,0.4.31055、乘法公式(反过来就是因式分解的公式): (ab)(ab)a2b2 (ab)2a22abb2 (ab)(a2abb2)a3b3(ab)(a2abb2)a3b3; a2b2(ab)22ab, (ab)2(ab)24ab6、幂的运算性质:amanamnamanamn(am)namn(ab)nanbn()nnan,特别:()n()na01(a0)如:a3a2a5,a6a2a4,(a3)2a6,(3a3)327a9,(3)1,52,()2()2,(3.14)1,()0

3、17、二次根式:()2a(a0),丨a丨,(a0,b0)如:(3)2456a0时,a的平方根4的平方根2(平方根、立方根、算术平方根的概念)8、一元二次方程:对于一元二次的一般式方程:ax2bxc0 (a0):当0时,方程有两个不相等的实数根当0时,方程有两个相等的实数根;当0时,方程没有实数根注意:当0时,方程有实数根求根公式是x,其中b24ac叫做根的判别式 若方程有两个实数根x1和x2,并且二次三项式ax2bxc可分解为a(xx1)(xx2)以a和b为根的一元二次方程是x2(ab)xab0二、统计与概率9、统计初步:(1)概念:所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体从总

4、体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数(2)公式:设有n个数x1,x2,xn,那么:平均数为:;极差:用一组数据的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,即:极差=最大值-最小值;方差:数据、, 的方差为,则=标准差:方差的算术平方根.数据、, 的标准差,则=一组数据的方差越大,这组数据的波动越大,越不稳定。10、频率与概率:(1)频率=,各小组的频数之和等于总数,各小组的频率

5、之和等于1,频率分布直方图中各个小长方形的面积为各组频率。(2)概率(大数次实验的频率概率)如果用P表示一个事件A发生的概率,则0P(A)1;P(必然事件)=1; P(不可能事件)=0;在具体情境中了解概率的意义,运用列举法(包括列表、画树状图)计算简单事件发生的概率。大量的重复实验时频率可视为事件发生概率的估计值;三、函数11、平面直角坐标系中的有关知识:(1)对称性:若直角坐标系内一点P(a,b),则P关于x轴对称的点为P1(a,b),P关于y轴对称的点为P2(a,b),关于原点对称的点为P3(a,b).(2)坐标平移:若直角坐标系内一点P(a,b)向左平移h个单位,坐标变为P(ah,b)

6、,向右平移h个单位,坐标变为P(ah,b);向上平移h个单位,坐标变为P(a,bh),向下平移h个单位,坐标变为P(a,bh).如:点A(2,1)向上平移2个单位,再向右平移5个单位,则坐标变为A(7,1).12、一次函数一般式ykxb(k0)的图象是一条直线,与x轴交于,与y轴交于(1)一次函数性质:特别:当b0时,ykx(k0)又叫做正比例函数(y与x成正比例),图象必过原点 【K决定:】 直线倾斜方向:直线倾斜程度:,【b决定】13、反比例函数y(k0)的图象叫做双曲线(1)反比例函数性质:当k0时,双曲线在一、三象限(在每一象限内,从左向右降);当k0时,双曲线在二、四象限(在每一象限

7、内,从左向右上升)因此,它的增减性与一次函数相反(2)双曲线矩形:(3)双曲线三角形:【特别提醒】:(1)直线的交点坐标为二元一次方程组的解。 (2)直线与双曲线的交点是方程组的解。14、二次函数的有关知识:(1).定义:一般地,如果是常数,那么叫做的二次函数.(2).抛物线的三要素:开口方向、对称轴、顶点. 的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同. 平行于轴(或重合)的直线记作.特别地,轴记作直线.(3)几种特殊的二次函数的图像特征如下:(0)函数解析式开口方向对称轴顶点坐标当时开口向上当时开口向下(轴)(0,0)(轴)(0, )(,0)

8、(,)()(4).求抛物线的顶点、对称轴的方法 (1)公式法:,顶点是,对称轴是直线. (2)配方法:运用配方的方法,将抛物线的解析式化为 (0)的形式,得到顶点为(,),对称轴是直线. (3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,对称轴与抛物线的交点是顶点。 若已知抛物线上两点(及y值相同),则对称轴方程可以表示为:(5).抛物线(0)中,的作用 决定开口方向及开口大小,这与中的完全一样. 和共同决定抛物线对称轴的位置.由于抛物线(0)的对称轴是直线,故:时,对称轴为轴;(即、同号)时,对称轴在轴左侧;(即、异号)时,对称轴在轴右侧. 的大小决定抛物线(0)与轴交点的位置

9、. 当时,抛物线(0)与轴有且只有一个交点(0,): ,抛物线经过原点; ,与轴交于正半轴;,与轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则 .15.用待定系数法求二次函数的解析式 (1)一般式:(0).已知图像上三点或三对、的值,通常选择一般式. (2)顶点式:(0).已知图像的顶点或对称轴,通常选择顶点式. (3)交点式:已知图像与轴的交点坐标、,通常选用交点式:.16.直线与抛物线的交点 (1)轴与抛物线(0)得交点为(0, ). (2)抛物线与轴的交点 二次函数(0)的图像与轴的两个交点的横坐标、,是对应一元二次方程(0)的两个实数根.抛物线与轴

10、的交点情况可以由对应的一元二次方程的根的判别式判定: 有两个交点()抛物线与轴相交; 有一个交点(顶点在轴上)()抛物线与轴相切; 没有交点()抛物线与轴相离. (3)平行于轴的直线与抛物线的交点 同(2)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为,则横坐标是的两个实数根. (4)一次函数的图像与二次函数的图像的交点,由方程组 的解的数目来确定:方程组有两组不同的解时与有两个交点; 方程组只有一组解时与只有一个交点;方程组无解时与没有交点. (5)抛物线与轴两交点之间的距离:若抛物线与轴两交点为,则 17、锐角三角函数:含义A的正弦:sinA,A的余

11、弦:cosA,A的正切:tanA平方关系:sin2Acos2A1 倒数关系:增减性:0sinA1,0cosA1,tanA0A越大,A的正弦和正切值越大,余弦值反而越小余角公式:sin(90A)cosA,cos(90A)sinA特殊角的三角函数值:三角函数 0 30 45 60 90sin01cos10tan01不存在cot不存在10hl斜坡的坡度:i设坡角为,则itan四、空间与图形线段,射线,直线:1 过两点有且只有一条直线(两点确定一条直线) 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 性质:6 直线外一点与直线上各点

12、连接的所有线段中,垂线段最短 7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 平行线判定:12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 三角形边角关系:15 定理 三角形两边的和大于第三边 16 推论 三角形两边的差小于第三边 三角形的内角与外角:17 三角形内角和定理 三角形三个内角的和等于180 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内

13、角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 全等三角形性质:21 全等三角形的对应边、对应角、对应高线、对应中线、对应角平分线相等。面积、周长也相等。 全等三角形判定:22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 角平分线定理:27 定理1 在角的平分线上的点到这个角的

14、两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 等腰三角形:30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60 34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60的等腰三角形是等边三

15、角形 Rt中两个一半:37 在直角三角形中,如果一个锐角等于30那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 中垂线定理:39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 轴对称性质:42 定理1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理 如果

16、两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 勾股定理:46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即 47逆定理 如果三角形的三边长a、b、c有关系 ,那么这个三角形是直角三角形 多边形内角和外角:48定理 四边形的内角和等于360 49四边形的外角和等于360 50多边形内角和定理 n边形的内角的和等于(n-2)180 51推论 任意多边的外角和等于360 平行四边形性质定理:52平行四边形性质定理1 平行四边形的对角相等 53平行四边形性质定理2 平行四边形的对边平行且相等 54推论 夹在两条平行线间的平行线段相等 55平行四边形性质定理

17、3 平行四边形的对角线互相平分 平行四边形判定定理:56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形 58平行四边形判定定理3 对角线互相平分的四边形是平行四边形 59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 矩形性质定理:60性质定理1 矩形的四个角都是直角 61性质定理2 矩形的对角线相等 矩形判定定理:62判定定理1 有三个角是直角的四边形是矩形 63判定定理2 对角线相等的平行四边形是矩形菱形性质定理: 64菱形性质定理1 菱形的四条边都相等 65菱形性质定理2 菱形的对角线互相垂直,并且每

18、一条对角线平分一组对角 66菱形面积=对角线乘积的一半,即S=(ab)2 菱形判定定理:67菱形判定定理1 四边都相等的四边形是菱形 68菱形判定定理2 对角线互相垂直的平行四边形是菱形 正方形性质定理:69正方形性质定理1 正方形的四个角都是直角,四条边都相等 70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 中心对称:两个图形绕某一点旋转180后能与互相重合,这两个图形关于这一点成中心对称。71定理1 关于中心对称的两个图形是全等的 72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73逆定理 如果两个图形的对应点连线都经

19、过某一点,并且被这一点平分,那么这两个图形关于这 一点成中心对称 等腰梯形性质定理:74等腰梯形性质定理 等腰梯形在同一底上的两个角相等 75等腰梯形的两条对角线相等 等腰梯形判定定理:76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 77对角线相等的梯形是等腰梯形 梯形常用辅助线:平行线等分线段定理:78平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等 ()79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰 80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边 中位线定理:81 三角形中位线定理 三角形的中位线

20、平行于第三边,并且等于它的一半 82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L 比例性质:83 (1)比例的基本性质 如果, 那么, 如果, 那么 (交叉相乘)84 (2)合比性质 如果, 那么 85 (3)等比性质 如果, 那么 黄金分割:线段AB被点C黄金分割(ACBC),点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比:相似三角形判定定理:90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 (A型图或X型图)91 相似三角形判定定理1 两角对应相等,两三角形相似(AA) 92 直角三角形被斜边上的高分成的两个直角

21、三角形和原三角形相似 (射影定理)93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS) 94 判定定理3 三边对应成比例,两三角形相似(SSS) 95 定理 如果两个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似(HL)相似三角形性质定理:96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比 97 性质定理2 相似三角形周长的比等于相似比 98 性质定理3 相似三角形面积的比等于相似比的平方 点与圆的位置关系:(圆的半径为R,某一点到圆心的距离为d)101 (如果dR 点在圆上)102 (如果dR点在圆内)103 (如果dR点在圆外

22、)三点共圆:104定理 不在同一直线上的三点确定一个圆。109 三角形的外接圆圆心(外心)是三边垂直平分线的交点。垂径定理:110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 111推论1 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 弦的垂直平分线经过圆心,并且平分弦所对的两条弧 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 112推论2 圆的两条平行弦所夹的弧相等 113圆是以圆心为对称中心的中心对称图形 垂径定理及其推论可概括为: 过圆心 垂直于弦直径 平分弦 知二推三 平分弦所对的优弧 平分弦所对的劣弧四量定理:(弦,弧,弦心距,圆心角)114

23、定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等 115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等 (有一必有三)圆周角定理:116定理 一条弧所对的圆周角等于它所对的圆心角的一半 117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 118推论2 半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径 119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 直线与圆的位置关系:设R为圆的半径,d为圆心到直线的距离(1)直线与圆相离

24、dR 直线与圆没有交点(2)直线与圆相切dR 直线与圆没有唯一交点(3)直线与圆相交dR 直线与圆没有有两个交点圆的内接四边形:120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角 相交弦定理O中,弦AB与弦CD相交与点E,则AEBE=CEDE切线的判定与性质:122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 123切线的性质定理 圆的切线垂直于经过切点的半径 124推论1 经过圆心且垂直于切线的直线必经过切点 125推论2 经过切点且垂直于切线的直线必经过圆心 OPBCA切线长定理:126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这

25、一点的连线平分两条切线的夹角 弦切角定理:127圆的外切四边形的两组对边的和相等 128弦切角定理 弦切角等于它所夹的弧对的圆周角 129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等 131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项 切割线定理:132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项 133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等 两圆位置关系:134如果两个圆相切,那么切点一定在连心线上

26、135 设R 、r分别为两圆半径,d为两圆圆心距两圆外离 dR+r 两圆外切 dR+r 两圆相交 RrdR+r (Rr) 两圆内切 dRr (Rr) 两圆内含dRr (Rr) 136定理 相交两圆的连心线垂直平分两圆的公共弦 正多边形与圆:137定理 把圆分成n等分(n3): 依次连结各分点所得的多边形是这个圆的内接正n边形 经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形 138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆 139正n边形的每个内角都等于140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形 141正n边形的面积 142正三角形面积 ( a表示边长 )五、数学计算公式:等边三角形面积S正(边长)2 平行四边形面积S平行四边形底高菱形面积S菱形底高(对角线的积),梯形面积圆面积S圆R2 圆周长l圆周长2R 弧长L 扇形面积 圆柱侧面积S圆柱侧底面周长高2rh,圆柱表面积S全面积S侧S底2rh2r2圆锥侧面积S圆锥侧底面周长母线rb, 圆锥表面积S全面积S侧S底rbr2RtABC的三条边分别为:a、b、c(c为斜边),则它的内切圆的半径;ABC的周长为,面积为S,其内切圆的半径为r,则内公切线长= d(Rr) 外公切线长= d(R+r)专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁