《2019-2020学年九年级数学上册-3.2-圆的对称性教案-苏科版.doc》由会员分享,可在线阅读,更多相关《2019-2020学年九年级数学上册-3.2-圆的对称性教案-苏科版.doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2019-2020学年九年级数学上册 3.2 圆的对称性教案 苏科版教学目标(二)能力训练要求1经历探索圆的对称性及相关性质的过程,进一步体会和理解研究几何图形的各种方法2培养学生独立探索、相互合作交流的精神(三)情感与价值观要求通过学习垂径定理及其逆定理的证明,使学生领会数学的严谨性和探索精神,培养学生实事求是的科学态度和积极参与的主动精神垂径定理及其逆定理垂径定理及其逆定理的证明指导探索和自主探索相结合教学过程一创设问题情境,引入新课师前面我们已探讨过轴对称图形,哪位同学能叙述一下轴对称图形的定义? 生如果一个图形沿着某一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫轴对称图形,
2、这条直线叫对称轴 师我们是用什么方法研究了轴对称图形? 生折叠 师今天我们继续用前面的方法来研究圆的对称性二讲授新课师同学们想一想:圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴? 生圆是轴对称图形,过圆心的直线是它的对称轴,有无数条对称轴 师是吗?你是用什么方法解决上述问题的?大家互相讨论一下 生我们可以利用折叠的方法,解决上述问题把一个圆对折以后,圆的两半部分重合,折痕是一条过圆心的直线,由于过圆心可以作无数条直线,这样便可知圆有无数条对称轴 师很好教师板书:圆是轴对称图形,其对称轴是任意一条过圆心的直线下面我们来认识一下弧、弦、直径这些与圆有关的概念1圆弧:圆上任意两点
3、间的部分叫做圆弧,简称弧2弦:连接圆上任意两点的线段叫做弦3直径:经过圆心的弦叫直径如下图,以A、B为端点的弧记作 ,读作“圆弧AB”或“弧AB”;线段AB是O的一条弦,弧CD是O的一条直径 注意:1弧包括优弧和劣弧,大于半圆的弧称为优弧,小于半圆的弧称为劣弧如上图中,以A、D为端点的弧有两条:优弧ACD(记作 ),劣弧ABD(记作 )半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧叫半圆弧,简称半圆半圆是弧,但弧不一定是半圆;半圆既不是劣弧,也不是优弧2直径是弦,但弦不一定是直径下面我们一起来做一做:(出示投影片321A)按下面的步骤做一做:1在一张纸上任意画一个O,沿圆周将圆剪下,把
4、这个圆对折,使圆的两半部分重合2得到一条折痕CD3在O上任取一点A,过点A作CD折痕的垂线,得到新的折痕,其中,点M是两条折痕的交点,即垂足 4将纸打开,新的折痕与圆交于另一点B,如上图 师老师和大家一起动手(教师叙述步骤,师生共同操作) 师通过第一步,我们可以得到什么? 生齐声可以知道:圆是轴对称图形,过圆心的直线是它的对称轴 师很好在上述的操作过程中,你发现了哪些相等的线段和相等的弧?生我发现了,AMBM, , 师为什么呢?生因为折痕AM与BM互相重合,A点与B点重合师还可以怎么说呢?能不能利用构造等腰三角形得出上面的等量关系?师生共析如下图示,连接OA、OB得到等腰OAB,即OAOB因C
5、DAB,故OAM与OBM都是Rt,又OM为公共边,所以两个直角三角形全等,则AMBM又O关于直径CD对称,所以A点和B点关于CD对称,当圆沿着直径CD对折时,点A与点B重合, 与 重合, 与 重合因此AMBM, = , = 师在上述操作过程中,你会得出什么结论?生垂直于弦的直径平分这条弦,并且平分弦所对的弧师同学们总结得很好这就是利用圆的轴对称性得到的与圆相关的一个重要性质垂径定理在这里注意;条件中的“弦”可以是直径结论中的“平分弧”指平分弦所对的劣弧、优弦(定理的证明过程教师边板书,边叙述)师为了运用的方便,不易出现错误,易于记忆,可将原定理叙述为:一条直线若满足:(1)过圆心;(2)垂直于
6、弦,那么可推出:平分弦,平分弦所对的优弧,平分弦所对的劣弧即垂径定理的条件有两项,结论有三项用符号语言可表述为:如图37,在O中,下面,我们通过求解例1,来熟悉垂径定理:例1如下图所示,一条公路的转弯处是一段圆弧(即图中 ,点O是 的圆心),其中CD600m,E为 上一点,且OECD,垂足为F,EF90m,求这段弯路的半径师生共析要求弯路的半径,连结OC,只要求出OC的长便可以了因为已知OECD,所以CF CD300cm,OFOEEF,此时就得到了一个RtCFO,哪位同学能口述一下如何求解?生连结OC,设弯路的半径为R m,则OF(R90)m,OECD,CF CD 600300(m)据勾股定理
7、,得OC2CF2OF2,即R23002(R90)2解这个方程,得R545这段弯路的半径为545m师在上述解题过程中使用了列方程的方法,用代数方法解决几何问题,这种思想应在今后的解题过程中注意运用随堂练习:P921略下面我们来想一想(出示投影片321B)如下图示,AB是O的弦(不是直径),作一条平分AB的直径CD,交AB于点M师上图是轴对称图形吗?如果是,其对称轴是什么?生它是轴对称图形,其对称轴是直径CD所在的直线师很好你是用什么方法验证上述结论的?大家互相交流讨论一下,你还有什么发现?生通过折叠的方法,与刚才垂径定理的探索方法类似,在一张纸上画一个O,作一条不是直径的弦AB,将圆对折,使点A
8、与点B重合,便得到一条折痕CD与弦AB交于点MCD就是O的对称轴,A点、B点关于直径CD对称由轴对称可知,ABCD, = , = 师大家想想还有别的方法吗?互相讨论一下生如上图连接OA、OB便可得到一个等腰OAB,即OAOB,又AMMB,即M点为等腰OAB底边上的中线由等腰三角形三线合一的性质可知CDAB,又CD是O的对称轴,当圆沿CD对折时,点A与点B重合, 与 重合, 与 重合师在上述的探讨中,你会得出什么结论?生平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧师为什么上述条件要强调“弦不是直径”?生因为圆的任意两条直径互相平分,但是它们不一定是互相垂直的师我们把上述结论称为垂径定理的
9、一个逆定理师同学们,你能写出它的证明过程吗?生如上图,连结OA、OB,则OAOB在等腰OAB中,AMMB,CDAB(等腰三角形的三线合一)O关于直径CD对称当圆沿着直径CD对折时,点A与点B重合, 与 重合, 与 重合 = , = 师接下来,做随堂练习:P922如果圆的两条弦互相平行,那么这两条弦所夹的弧相等吗?为什么?答:相等理由:如下图示,过圆心O作垂直于弦的直径EF,由垂径定理设 = , = ,用等量减等量差相等,得 = ,即 = ,故结论成立 符合条件的图形有三种情况:(1)圆心在平行弦外,(2)在其中一条线弦上,(3)在平行弦内,但理由相同三课时小结1本节课我们探索了圆的对称性2利用
10、圆的轴对称性研究了垂径定理及其逆定理3垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题四课后作业(一)课本P93,习题32,1、2教学反思一: 本以为这课很简单,学生接受起来没问题,而通过学习发现,同学们在一些概念的理解上仍然容易混淆,比如弦和弧、所对的弧等等,今后教学要进一步加强教学的直观性,充分利用多媒体,让学生真正体会圆确实存在于生活的各个领域,认识到圆所具有的其他图形都不具有的特性美,加强应用数学的意识。三:本节课在引入之后设计一个折叠圆形纸片的过程,让学生通过观察,大胆猜想,得出结论,同时也突出圆的对称性。这一环节的设计,既体现了教师的主导作用,又让学生参与了知识的发生过程,这也符合素质教育的要求,即让学生由被动接受知识到主动发现知识,在学生动手折叠的过程中,教会他们观察,让他们学会思考。通过桥的问题让学生进一步领悟学习数学的应用价值,感受学好数学的必要性。