相似三角形”A“字模型(含详细答案解析)~经典.doc

上传人:知****量 文档编号:13004594 上传时间:2022-04-27 格式:DOC 页数:12 大小:309KB
返回 下载 相关 举报
相似三角形”A“字模型(含详细答案解析)~经典.doc_第1页
第1页 / 共12页
相似三角形”A“字模型(含详细答案解析)~经典.doc_第2页
第2页 / 共12页
点击查看更多>>
资源描述

《相似三角形”A“字模型(含详细答案解析)~经典.doc》由会员分享,可在线阅读,更多相关《相似三角形”A“字模型(含详细答案解析)~经典.doc(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、. .教师辅导教案授课日期:年月日授课课时:课时学员XX年级辅导科目数学学科教师班主任授课时间教学课题教学目标教学重难点课前检查作业完成情况:优良中差建议:教学内容一、相似三角形的性质1相似三角形的对应角相等与相似,则有2相似三角形的对应边成比例与相似,则有(为相似比)3相似三角形的对应边上的中线,高线和对应角的平分线成比例,都等于相似比与相似,是中边上的中线,是中边上的中线,则有(为相似比)与相似,是中边上的高线,是中边上的高线,则有(为相似比)与相似,是中的角平分线,是中的角平分线,则有(为相似比)4相似三角形周长的比等于相似比与相似,则有(为相似比)应用比例的等比性质有5相似三角形面积的

2、比等于相似比的平方与相似,是中边上的高线,是中边上的高线,则有(为相似比)进而可得二、相似三角形的判定1平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似2如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似可简单说成:两角对应相等,两个三角形相似3如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似4如果一个三角形的三条边与另一个三角形的你对应成比例,那么这两个三角形相似可简单地说成:三边对应成比例,两个三角形相似5如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么

3、这两个直角三角形相似6直角三角形被斜边上的高分成的两个直角三角形相似(常用但要证明)7如果一个等腰三角形和另一个等腰三角形的顶角相等或一对底角相等,那么这两个等腰三角形相似;如果它们的腰和底对应成比例,那么这两个等腰三角形也相似三、相似证明中的基本模型A字形图字型,DE/BC ;结论:,【例1】李老师在编写下面这个题目的答案时,不小心打乱了解答过程的顺序,你能帮他调整过来吗?证明步骤正确的顺序是()已知:如图,在ABC中,点D,E,F分别在边AB,AC,BC上,且DEBC,DFAC,求证:ADEDBF证明:又DFAC,DEBC,A=BDF,ADE=B,ADEDBFABCD【解答】证明:DEBC

4、,ADE=B,又DFAC,A=BDF,ADEDBF故选:B【练1】如图,在ABC中,ACB=90,BC=16cm,AC=12cm,点P从点B出发,以2cm/秒的速度向点C移动,同时点Q从点C出发,以1cm/秒的速度向点A移动,设运动时间为t秒,当t=4.8或秒时,CPQ与ABC相似【解答】解:CP和CB是对应边时,CPQCBA,所以,即,解得t=4.8;CP和CA是对应边时,CPQCAB,所以,即,解得t=综上所述,当t=4.8或时,CPQ与CBA相似故答案为4.8或图反字型,ADE= B或1=B结论:【例2】如同,在ABC中,点D,E分别在边AB,AC上,下列条件中不能判断ABCAED的是(

5、)A=B=CADE=CDAED=B【解答】解:DAE=CAB,当AED=B或ADE=C时,ABCAED;当=即=时,ABCAED故选:A【例3】如图,P是ABC的边AB上的一点(不与A、B重合)当ACP=B时,APC与ABC是否相似;当AC、AP、AB满足时,ACP与ABC相似【解答】解:A=A,ACP=B,ACPABC;,A=A,ACP与ABC;故答案为:B;【练习1】如图,D、E为ABC的边AC、AB上的点,当ADE=B时,ADEABC其中D、E分别对应B、C(填一个条件)【解答】解:当ADE=B,EAD=CAB,ADEABC故答案为ADE=B【练习2】如图,在ABC中,D、E分别在AB与

6、AC上,且AD=5,DB=7,AE=6,EC=4求证:ADEACB【解答】证明:AD=5,DB=7,AE=6,EC=4,AB=5+7=12,AC=6+4=10,=,=,又A=A,ADEACB【练习3】如图,AB=AC,A=36,BD是ABC的角平分线,求证:ABCBCD【解答】证明:AB=AC,A=36,ABC=C=72,BD是角平分线,ABD=DBC=36,A=CBD,又C=C,ABCBCD【练习4】已知:如图,ABC中,ACD=B,求证:ABCACD【解答】证明:ACD=B,A=A,ABCACD【练习5】如图,已知ADAC=ABAE求证:ADEABC【解答】证明:ADAC=AEAB,=在A

7、BC与ADE 中=,A=A,ABCADE【练习6】已知:如图,在ABC中,D,E分别为AB、AC边上的点,且AD=AE,连接DE若AC=4,AB=5求证:ADEACB【解答】证明:AC=3,AB=5,AD=,A=A,ADEACB图双字型【例4】如图,在ABC中,D,E分别是AB,AC上的点,AED=ABC,BAC的平分线AF交DE于点G,交BC于点F(1)试写出图中所有的相似三角形,并说明理由(2)若=,求的值【解答】解:(1)AED=ABC,EAD=BAC,ABCAEDAED=ABC,EAG=BAF,AEGABFEDG=ACF,DAG=CAF,ADGACF(2)=,=,ADGACF,=【练习

8、1】如图,在ABC中,D、E分别是AB、AC上的点,AE=4,AB=6,AD:AC=2:3,ABC的角平分线AF交DE于点G,交BC于点F(1)请你直接写出图中所有的相似三角形;(2)求AG与GF的比【解答】解:(1)ADGACF,AGEAFB,ADEACB;(2)=,=,=,又DAE=CAB,ADEACB,ADG=C,AF为角平分线,DAG=FAEADGACF,=,=2图内含正方形字形,结论(为正方形边长)【例5】如图,ABC,是一X锐角三角形的硬纸片,AD是边BC上的高,BC=40cm,AD=30cm,从这X硬纸片上剪下一个长HG是宽HE的2倍的矩形EFGH,使它的一边EF在BC上,顶点G

9、、H分别在AC,AB上,AD与HG的交点为M(1)求证:=;(2)求这个矩形EFGH的周长;(3)是否存在一个实数a,当HE=a时从三角形硬纸片上剪下的矩形面积最大?若存在,试求出a;若不存在,请说明理由【解答】(1)证明:四边形HEFG为矩形,HGEF,而ADBC,AMBC,AHGABC,=;(2)解:设HE=x,HG=2x,则=,解得x=12,这个矩形EFGH的周长=2x+4x=6x=72(cm);(3)存在当HE=a,则=,HG=a+30,S矩形HEFG=a(a+30)=a2+30a,当a=时,S矩形HEFG最大,即当HE=cm时从三角形硬纸片上剪下的矩形面积最大【练习1】如图,ABC,

10、是一X锐角三角形的硬纸片,AD是边BC上的高,BC=80cm,AD=60cm,从这X硬纸片上剪下一个长HG是宽HE的2倍的矩形EFGH,使它的一边EF在BC上,顶点G、H分别在AC,AB上,AD与HG的交点为M(1)试说明:=的理由;(2)求这个矩形EFGH的面积【解答】(1)证明:四边形EFGH为矩形,EFGH,AHG=ABC,又HAG=BAC,AHGABC,=;(2)解:设HE=xcm,MD=HE=xcm,AD=60cm,AM=(60x)cm,HG=2HE,HG=2xcm,由(1)得,可得=,解得,x=24,故HE=24,HG=2x=48,则矩形EFGH的面积=2412=1152cm2【例

11、6】如图,在ABC中,D为AC上一点,E为CB延长线上一点,且,求证:AD=EB【解答】证明:过D点作DHBC交AB于H,如图,DHBC,AHDABC,=,即=,DHBE,BEFHDF,=,而,=,AD=EB【例7】如图,在ABC中,BAC=90,BC的垂直平分线交BC于点E,交CA的延长线于D,交AB于点F,求证:AE2=EFED【解答】解:BAC=90,B+C=90,D+C=90,B=D,BC的垂直平分线交BC于点E,BAC=90BE=EA,B=BAE,D=BAE,FEA=AED,FEAAED,=AE2=EFED“旋转型”相似三角形,如图若图中1=2,B=D(或C=E),则ADEABC,该

12、图可看成把第一个图中的ADE绕点A旋转某一角度而形成的【例8】如图,在ABC与ADE中,BAC=D,要使ABC与ADE相似,还需满足下列条件中的()A=B=C=D=【解答】解:BAC=D,ABCADE故选:C【练习1】如图所示,在ABC与ADE中,ABED=AEBC,要使ABC与ADE相似,还需要添加一个条件,这个条件是B=E(答案不唯一)(只加一个即可)并证明【解答】解:条件,B=E证明:ABED=AEBC,=B=E,ABCAED条件,=证明:ABED=AEBC,=,=,ABCAED故答案为:B=E(答案不唯一)【练习2】如图,已知:BAC=EAD,AB=20.4,AC=48,AE=17,A

13、D=40求证:ABCAED【解答】证明:AB=20.4,AC=48,AE=17,AD=40=1.2,=1.2,=,BAC=EAD,ABCAED【练习3】如图,在ABC和ADE中,已知B=D,BAD=CAE,求证:ABCADE【解答】解:如图,BAD=CAE,BAD+BAE=CAE+BAE,即DAE=BAC又B=D,ABCADE【练习4】如图,ABC、DEP是两个全等的等腰直角三角形,BAC=PDE=90(1)若将DEP的顶点P放在BC上(如图1),PD、PE分别与AC、AB相交于点F、G求证:PBGFCP;(2)若使DEP的顶点P与顶点A重合(如图2),PD、PE与BC相交于点F、G试问PBG与FCP还相似吗?为什么?【解答】(1)证明:如图1,ABC、DEP是两个全等的等腰直角三角形,B=C=DPE=45,BPG+CPF=135,在BPG中,B=45,BPG+BGP=135,BGP=CPF,B=C,PBGFCP;(2)解:PBG与FCP相似理由如下:如图2,ABC、DEP是两个全等的等腰直角三角形,B=C=DPE=45,BGP=C+CPG=45+CAG,CPF=FPG+CAG=45+CAG,AGP=CPF,B=C,PBGFCP课堂小结:. .word.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 研究报告 > 设计方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁