《初中数学及高中数学衔接紧密的知识点.doc》由会员分享,可在线阅读,更多相关《初中数学及高中数学衔接紧密的知识点.doc(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、. .初中数学与高中数学衔接严密的知识点 1 绝对值:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。正数的绝对值是他本身,负数的绝对值是他的相反数,0的绝对值是0,即两个负数比拟大小,绝对值大的反而小两个绝对值不等式:;或2 乘法公式:平方差公式:立方差公式:立方和公式:完全平方公式:,完全立方公式:3 分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。方法:提公因式法,运用公式法,分组分解法,十字相乘法。4 一元一次方程:在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。解一元一次方程的步骤:去分母,移项,合并同类项,未知
2、数系数化为1。关于方程解的讨论当时,方程有唯一解;当,时,方程无解 当,时,方程有无数解;此时任一实数都是方程的解。5 二元一次方程组:1两个二元一次方程组成的方程组叫做二元一次方程组。2适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。3二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。4解二元一次方程组的方法:代入消元法,加减消元法。6 不等式与不等式组1不等式:用符不等号、连接的式子叫不等式。不等式的两边都加上或减去同一个整式,不等号的方向不变。不等式的两边都乘以或者除以一个正数,不等号方向不变。不等式的两边都乘以或除以同一个负数,不等号方向相反。2不等式的
3、解集:能使不等式成立的未知数的值,叫做不等式的解。一个含有未知数的不等式的所有解,组成这个不等式的解集。求不等式解集的过程叫做解不等式。3一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。4一元一次不等式组:关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。一元一次不等式组中各个不等式的解集的公共局部,叫做这个一元一次不等式组的解集。求不等式组解集的过程,叫做解不等式组。7 一元二次方程:方程有两个实数根方程有两根同号方程有两根异号韦达定理及应用:, 8 函数1变量:因变量,自变量。 在用图象表示变量之间的关系时,通常用水
4、平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。2一次函数:假设两个变量,间的关系式可以表示成为常数,不等于0的形式,那么称是的一次函数。当=0时,称是的正比例函数。3一次函数的图象及性质把一个函数的自变量与对应的因变量的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。正比例函数=的图象是经过原点的一条直线。在一次函数中,当0, O,那么经2、3、4象限;当0,0时,那么经1、2、4象限;当0, 0时,那么经1、3、4象限;当0, 0时,那么经1、2、3象限。当0时,的值随值的增大而增大,当0时,的值随值的增大而减少。4二次函数:一
5、般式:(),对称轴是顶点是;顶点式:(),对称轴是顶点是;交点式:(),其中,是抛物线与x轴的交点5二次函数的性质 函数的图象关于直线对称。时,在对称轴 左侧,值随值的增大而减少;在对称轴右侧;的值随值的增大而增大。当时,取得最小值时,在对称轴 左侧,值随值的增大而增大;在对称轴右侧;的值随值的增大而减少。当时,取得最大值9 图形的对称1轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的局部能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。轴对称图形上关于对称轴对称的两点确定的线段被对称轴垂直平分。2中心对称图形:在平面内,一个图形绕某个点旋转180度,如果旋转前后的图形互相重合
6、,那么这个图形叫做中心对称图形,这个点叫做他的对称中心。中心对称图形上的每一对对应点所连成的线段都被对称中心平分。10 平面直角坐标系1在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。水平的数轴叫做轴或横轴,铅直的数轴叫做轴或纵轴,轴与轴统称坐标轴,他们的公共原点称为直角坐标系的原点。2平面直角坐标系内的对称点:设,是直角坐标系内的两点,假设和关于轴对称,那么有。假设和关于轴对称,那么有。假设和关于原点对称,那么有。假设和关于直线对称,那么有。假设和关于直线对称,那么有或。11 统计与概率:1科学记数法:一个大于10的数可以表示成的形式,其中大于等于1小于10,是正整数。2扇形统计
7、图:用圆表示总体,圆中的各个扇形分别代表总体中的不同局部,扇形的大小反映局部占总体的百分比的大小,这样的统计图叫做扇形统计图。扇形统计图中,每局部占总体的百分比等于该局部所对应的扇形圆心角的度数与360度的比。3各类统计图的优劣:条形统计图:能清楚表示出每个工程的具体数目;折线统计图:能清楚反映事物的变化情况;扇形统计图:能清楚地表示出各局部在总体中所占的百分比。5平均数:对于个数,我们把()叫做这个个数的算术平均数,记为。6加权平均数:一组数据里各个数据的重要程度未必一样,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。7中位数与众数:N个数据按大小顺序排列,处于最中
8、间位置的一个数据或最中间两个数据的平均数叫做这组数据的中位数。一组数据中出现次数最大的那个数据叫做这个组数据的众数。优劣比拟:平均数:所有数据参加运算,能充分利用数据所提供的信息,因此在现实生活中常用,但容易受极端值影响;中位数:计算简单,受极端值影响少,但不能充分利用所有数据的信息;众数:各个数据如果重复次数大致相等时,众数往往没有特别的意义。8调查:为了一定的目的而对考察对象进展的全面调查,称为普查,其中所要考察对象的全体称为总体,而组成总体的每一个考察对象称为个体。从总体中抽取局部个体进展调查,这种调查称为抽样调查,其中从总体中抽取的一局部个体叫做总体的一个样本。抽样调查只考察总体中的一
9、小局部个体,因此他的优点是调查X围小,节省时间,人力,物力和财力,但其调查结果往往不如普查得到的结果准确。为了获得较为准确的调查结果,抽样时要主要样本的代表性和广泛性。9频数与频率:每个对象出现的次数为频数,而每个对象出现的次数与总次数的比值为频率。当收集的数据连续取值时,我们通常先将数据适当分组,然后再绘制频数分布直方图。10数据的波动:极差是指一组数据中最大数据与最小数据的差。方差是各个数据与平均数之差的平方和的平均数。标准差就是方差的算术平方根。一般来说,一组数据的极差,方差,或标准差越小,这组数据就越稳定。11事件的可能性:有些事情我们能确定他一定会发生,这些事情称为必然事件;有些事情我们能肯定他一定不会发生,这些事情称为不可能事件;必然事件和不可能事件都是确定的。有很多事情我们无法肯定他会不会发生,这些事情称为不确定事件。一般来说,不确定事件发生的可能性是有大小的。12概率:人们通常用1或100%来表示必然事件发生的可能性,用0来表示不可能事件发生的可能性。游戏对双方公平是指双方获胜的可能性一样。必然事件发生的概率为1,记作必然事件;不可能事件发生的概率为,记作不可能事件;如果A为不确定事件,那么. .word.