《2022年机械振动和机械波知识点总结.docx》由会员分享,可在线阅读,更多相关《2022年机械振动和机械波知识点总结.docx(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、一、学问结构机械振动和机械波周期性运动阻尼振动特点变加速运动机械能守恒机械振动弹簧振子描写物理量振幅 A 、频率 f、周期 T简谐振动单摆振动描述方法图象法受迫振动振动在媒质中传递共振周期公式(测 g)形成与特点描写物理量波动特点简谐波机械波波形、图象周期、频率波的干涉波速=vT=v/f传播规律波的衍射波长二、重点学问回忆1 机械振动(一)机械振动物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够环围着平稳位置做往复运动,必定受到使它能够回到平稳位置的力即回复力;回复力是以成效命名的力, 它可以是一个力或一个力的分力,也可以是几个力的合力;产生振动的必要条件是: a、物体离开
2、平稳位置后要受到回复力作用; b、阻力足够小;(二)简谐振动1. 定义:物体在跟位移成正比,并且总是指向平稳位置的回复力作用下的振动叫简谐振动;简谐振动是最简洁,最基本的振动;争论简谐振动物体的位置,经常建立以中心位置(平稳位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移;因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即 F= kx ,其中“”号表示力方向跟位移方向相反;2. 简谐振动的条件: 物体必需受到大小跟离开平稳位置的位移成正比,方向跟位移方向相反的回复力作用;3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点
3、在于它是一种周期性运动, 它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化;(三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情形常引入下面几个物理量;1. 振幅:振幅是振动物体离开平稳位置的最大距离,常用字母“A ”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒;2. 周期和频率, 周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数;振动的周期 T 跟频率 f 之间是倒数关系, 即 T=1/ f;振动的周期和频率都是描述
4、振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质打算的,与振幅无关,所以又叫固有周期和固有频率;(四)单摆:摆角小于5的单摆是典型的简谐振动;细线的一端固定在悬点,另一端拴一个小球,忽视线的伸缩和质量,球的直径远小于悬线长度的装置叫单摆;单摆做简谐振动的条件是:最大摆角小于5,单摆的回复力F 是重力在圆弧切线方向的分力; 单摆的周期公式是T=;由公式可知单摆做简谐振动的固有周期与振幅,摆球质量无关,只与L 和 g 有关,其中 L 是摆长,是悬点到摆球球心的距离;g 是单摆所在处的重力加速度,在有加速度的系统中(如悬挂在升降机中的单摆)其g 应为等效加速度;(五)振动图象;简谐振动的图
5、象是振子振动的位移随时间变化的函数图象;所建坐标系中横轴表示时间,纵轴表示位移;图象是正弦或余弦函数图象,它直观地反映出简谐振动的位移随时间作周期性变化的规律;要把质点的振动过程和振动图象联系起来,从图象可以得到振子在不同时刻或不同位置时位移、速度、加速度,回复力等的变化情形;(六) 机械振动的应用受迫振动和共振现象的分析( 1)物体在周期性的外力(策动力)作用下的振动叫做受迫振动,受迫振动的频率在振动稳固后总是等于外界策动力的频率,与物体的固有频率无关;( 2)在受迫振动中,策动力的频率与物体的固有频率相等时,振幅最大,这种现象叫共振,声音的共振现象叫做共鸣;2 机械波中的应用问题1. 懂得
6、机械波的形成及其概念;( 1)机械波产生的必要条件是: 有振动的波源; 有传播振动的媒质;( 2)机械波的特点:后一质点重复前一质点的运动,各质点的周期、频率及起振方向都与波源相同;( 3)机械波运动的特点:机械波是一种运动形式的传播,振动的能量被传递,但参加振动的质点仍在原平稳位置邻近振动并没有随波迁移;( 4)描述机械波的物理量关系:vf T注:各质点的振动与波源相同,波的频率和周期就是振源的频率和周期,与传播波的介质无关,波速取决于质点被带动的“难易”,由媒质的性质打算;2. 会用图像法分析机械振动和机械波;振动图像,例:波的图像,例:横坐标表示质点的振动时间横坐标表示介质中各质点的平稳
7、位置振动图像与波的图像的区分表征单个质点振动的位移随时间变化的规律相邻的两个振动状态始终相同的质点间的距离表示振动质点的振动周表征大量质点在同一时刻相对于平稳位置的位移相邻的两个振动始终同向的质点间的距离表示波长;例:8m期;例: T4s振动图像随时间而延长,而以前的外形保持不变,例:波 动 图 像 一 般 随 时 间 的 延 续 而 改 变( tkT )时的波形图保持不变,例:方法 1方法 2质点振动方向与波传播方向的判定平移波形法: 如下列图, 一列横波向右传播,判定 M点的振动方向;设想在 极短时间内波向右平移, 就下一刻波形如虚线上 M 正下方向的 M点, 由此知M 点应向下振动;反之
8、,已知M 向下振动, 波形应当右移, 故波是向右传播的;质点振动比较法:波向右传播,右边M 点的振动落后于左边的P 点, 故 M 点重复 P 点的振动, P 点在 M 点的下方,应“追随” P 点的运动, 故 M 点向下振动, 即“波向右传, M 点向下运动” ;“波向左传, M 点向上运动” ;三、【典型例题分析】【例 1】单摆的运动规律为:当摆球向平稳位置运动时位移变 ,回复力变,加速度变,加速度 a 与速度 的方向,速度变,摆球的运动性质为 ,摆球的动能变 ,势能变 ;当摆球远离平稳位置运动时位移变 ,回复力变 ,加速度变 ,加速度 a 与速度 的方向 ,速度变 ,摆球的运动性质为,摆球
9、的动能变 ,势能变 沙摆试验 1、简谐振动 2【例 2】 如图 6 1 所示,一个轻弹簧竖直固定在水平地面上,将一个小球轻放在弹簧上, M点为轻弹簧竖直放置时弹簧顶端位置,在小球下落的过程中,小球以相同的动量通过A、 B 两点,历时 1s,过 B 点后再经过 1s,小球再一次通过 B 点,小球在 2s 内通过的路程为 6cm,N 点为小球下落的最低点,就小球在做简谐运动的过程中:( 1 )周期为;( 2)振幅为;( 3)小球由 M 点下落到 N 点的过程中,动能 EK 、 重 力 势 能 EP 、 弹 性 势 能 EP的 变 化为;(4)小球在最低点N 点的加速度大小重力加速度 g(填、 );
10、分析 :( 1)小球以相同动量通过A、B 两点,由空间上的对称性可知图,6-平1M AO BN衡位置O 在 AB的中点;再由时间上的对称性可知,tAO=tBO=0.5s, t BN = tNB =0.5s,所以 tON tOB tBN 1s,因此小球做简谐运动的周期T 4tON=4s;( 2)小球从 A 经 B 到 N 再返回 B 所经过的路程,与小球从B 经 A 到 M 再返回 A 所经过的路程相等;因此小球在一个周期内所通过的路程是12cm,振幅为 3cm;( 3)小球由 M 点下落到 N 点的过程中,重力做正功,重力势能削减;弹力做负功,弹性势能增加;小球在振幅处速度为零,在平稳位置处速
11、率最大,所以动能先增大后减小;( 4)M 点为小球的振幅位置, 在该点小球只受重力的作用,加速度为 g,方向竖直向下, 由空间对称性可知,在另一个振幅位置(N 点)小球的加速度大小为g,方向竖直向上;解答 :4s; 3cm; EK 先增大后减小, EP 削减, EP增加;说明 :分析解决此题的关键是正确熟悉和利用简谐运动的对称性,其对称中心是平稳位置 O,特殊小球在最低点N 点的加速度值,是通过另一个振动最大位移的位置M 来判定的;假如小球是在离弹簧最上端肯定高度处释放的,而且在整个运动过程中,弹簧始终处于弹性形变中,那么小球与弹簧接触并运动的过程可以看成是一个不完整的简谐运动;由于小球被弹簧
12、弹起后,在弹簧处于原长时与弹簧分别,这个简谐运动有下方振动最大位移的位置,但无上方振动最大位移的位置,那么小球在运动过程中的最大加速度将大于重力加速度;【例 3】 已知某摆长为1m 的单摆在竖直平面内做简谐运动,就:(1)该单摆的周期为;( 2)如将该单摆移到表面重力加速度为地球表面重力加速度1 4 倍的星球表面,就其振动周期为;( 3)如在悬点正下方摆长中点处钉一光滑小钉,就该小球摇摆的周期为;分析 :第一问我们可以利用单摆周期公式运算出周期;其次问是通过转变当地重力加速度来转变周期的;只要找出等效重力加速度,代入周期公式即可得解;第三问的情形较为复杂,此时小球的摇摆已不再是一个完整的单摆简
13、谐运动;但我们留意到, 小球在摇摆过程中, 摆线在与光滑小钉接触前后,分别做摆长不同的两个简谐运动,所以我们只要求出这两个摆长不同的简谐运动的周期,便可确定出摇摆的周期;解答 :( 1)依据 T2L,可得 T=2s;g( 2)等效重力加速度为gg / 4 ,就依据 T2L,可得 T g4 s;( 3)钉钉后的等效摆长为:半周期摆长为L1 1m,另半周期摆长为L 20.5m;就该小球的摇摆周期为:T L1gL222sg2说明 :单摆做简谐运动的周期公式是我们学习各种简谐运动中唯独给出定量关系的周期公式; 应当特殊留意转变周期的因素: 摆长和重力加速度; 例如: 双线摆没有明确给出摆长, 需要你去
14、找出等效摆长;再例如:把单摆放入有加速度的系统中,等效重力加速度将发生怎样的变化;比如把单摆放入在轨道上运行的航天器中,由于摆球完全失重,等效重力加速度为 0,单摆不摇摆;把单摆放入混合场中,比如摆球带电,单摆放入匀强电场中,这时就需要通过分析回复力的来源从而找出等效重力加速度;这类问题将在电学中遇到;【例 4】一弹簧振子做简谐运动,振动图象如图 63 所示;振子依次振动到图中 a、b、c、d、e、f、 g、h 各点对应的时刻时, (1)在哪些时刻,弹簧振子具有:沿 x 轴正方向的最大加速度;沿 x 轴正方向的最大速度; ( 2)弹簧振子由 c 点对应 x 轴的位置运动到 e 点对应 x 轴的
15、位置,和由 e 点对应 x 轴的位置运动到 g 点对应 x 轴的位置所用时间均为 0.4s;弹簧振子振动的周期是多少?( 3)弹簧振子由e 点对应时刻振动到g 点对应时刻,它在 x 轴上通过的路程是6cm,求弹簧振子振动的振幅;分析:( 1)弹簧振子振动的加速度与位移大小成正比,与位移方向相反;振子具有沿x 轴正方向x/cmb7ac0dh-7egt/s最大加速度,必定是振动到沿x 轴具有负向的最大位移处,即图中f f 点对应的时刻;振子振动到平稳位置时,具有最大速度, 在 h 点时刻, 振子速度图最大6-3, 再稍过一点时间, 振子的位移为正值,这就说明在h 点对应的时刻,振子有沿x 轴正方向
16、的最大速度;( 2)图象中 c 点和 e 点,对应振子沿x 轴从 +7cm 处振动到 7cm 处; e、f、g 点对应振子沿 x 轴,从 7cm 处振动到负向最大位移处再返回到7cm 处;由对称关系可以得出,振子从 c 点对应 x 轴位置振动到 g 点对应 x 轴位置,振子振动半周期,时间为0.8s,弹簧振子振动周期为 T=1.6s;( 3)在 e 点、 g 点对应时间内,振子从x 轴上 7cm 处振动到负向最大位移处,又返回7cm 处行程共6cm,说明在x 轴上负向最大位移处到7cm 处相距 3cm,弹簧振子的振幅A=10cm;解答:(1) f 点; h 点;( 2) T=1.6s;( 3)
17、A=10cm;说明 : 此题主要考察结合振动图象如何判定在振动过程中描述振动的各物理量及其变化;争论振子振动方向时,可以把振子实际振动情形和图象描述放在一起对比,即在 x 轴左侧画一质点做与图象描述完全相同的运动形式;当某段图线随时间的推移上扬时,对应质点的振动方向向上;同理如下降,质点振动方向向下;振动图象时间轴各点的位置也是振子振动到对应时刻平稳位置的标志,在每个时刻振子的位移方向永久背离平稳位置,而回复力和加速度方向永久指向平稳位置,这均与振动速度方向无关;由于振子在一个全振动过程中所通过的路程等于 4 倍振幅,所以在 t 时间内振子振动 n 个周期,振子通过的路程就为 4nA;【例 6
18、】 一弹簧振子做简谐运动,周期为 T,以下说法正确选项( )A. 如 t 时刻和 t+ t时刻振子运动位移的大小相等、方向相同,就 t 肯定等于 T 的整数倍B. 如 t 时刻和 t+ t时刻振子运动速度的大小相等、方向相反,就 t 肯定等于 T/2 的整数倍C. 如 t T/2,就在 t 时刻和 t+ t时刻振子运动的加速度大小肯定相等D. 如 t T/2 ,就在 t 时刻和 t+ t时刻弹簧的长度肯定相等分析: 如图 6 4 所示为物体做简谐运动的图象;由图x0t1 t2tt 3t4图 6-4象可知,在 t1、t2 两个时刻,振子在平稳位置同侧的同一位置,即位移大小相等,方向相同,而 tt
19、2t1T ,所以选项 A 错误;在 t1 时刻振子向远离平稳位置方向振动,即具有正向速度,在t2 时刻振子向平稳位置方向振动,即具有负向速度,但它们速度大小相等;而tt2t1T;所以选项 B 错误;2由于tt4t1T ,振子在这两个时刻的振动情形完全相同,所以具有相同的加速度,选项 C 正确;由于tt3t1T,振子在这两个时刻位于平稳位置的两侧,即如t12时刻弹簧处于伸长状态,就 t3 时刻弹簧处于压缩状态;所以选项 D 错误;解答: 选项 C 正确;说明: 做简谐运动的物体具有周期性,即物体振动周期的整数倍后,物体的运动状态与初状态完全相同;做简谐运动的物体具有对称性,即描述振动的物理量的大
20、小(除周期和频率外)在关于平稳位置对称的两点上都相等,但矢量的方向不肯定相同;做简谐运动的物体具有往复性,即当物体振动回到同一点时,描述振动的物理量的大小(除周期和频率外)相同,但矢量的方向不肯定相同;【例 7】在某介质中, 质点 O 在 t0 时刻由平稳位置开头向上振动;经 0.1s 第一次向上振动到最大位移处;同时,产生的横波水平向右传播了50cm;在 O 点右侧有一点 P,与 O 点相距 8m;求:( 1)这列横波的波速; ( 2)波动传播到 P 点, P 点刚开头振动时的速度方向;( 3)从 O 点开头振动到 P 点第一次到达波峰位置所需时间?分析 :由题目所给条件可知:振源在 0.1
21、s 内振动了 14 周期,波对应向右传播 14 个波长,从而可以确定波长和周期,进而求出波速;由于波匀速向前传播,所以波从 O 点传播到 P 点所用时间 OP 距离波速;当波传播到 P 点时, O 点的振动形式也传播到了 P 点, 因而 P 点的起振方向与 O 点起振方向相同, 即为竖直向上, P 点由平稳位置第一次到达波峰仍在需要1 T 时间;4解答 :(1)由题意知:周期T=0.1 4=0.4s波长 =0.5 4=2m波速 vT5 m/s( 2) P 点刚开头振动时的速度方向为竖直向上;( 3)设所求时间为 t,就tOP v1 T1.7 (s)4说明 :题目本身并不难,但要求对机械波的形成
22、和传播能有一个正确的懂得,在多数有关机械波的高考题目中也是这样表达的;随着波的传播,振动形式和能量在传播, 所以波动涉及到的每一个质点都要把振源的振动形式向外传播,即进行完全重复的振 动,其刚开头的振动方向肯定与振源的起振方向相同;【例 8】如图 6-10 所示,甲为某一简谐横波在t=1.0s 时刻的图象,乙为参加波动的某一质点的振动图象;( 1)两图中的 AA 、OC 各表示什么物理量?量值各是多少?( 2)说明两图中OA B 段图线的意义?( 3)该波的波速为多大?( 4)画出再经过 0 .25s 后的波动图象和振动图象;0.20-0.2y/mP PABC1234A甲x/m0.20-0.2
23、y/mAB0.51A乙t/ s( 5)甲图中 P 点此刻的振动方向;分析 :依据波动图象和振动图象的物理意义来分析判定;留意振动图象和波动图象的区分与联系;图 6-10解答 :(1)甲图中的 AA 表示振幅 A 和 x=1m 处的质点在 t=1.0s 时对平稳位置的位移,振幅 A=0.2m, 位移 y= -0.2m;甲图中 OC 表示波长,大小=4m;乙图中 AA 即是质点振动的振幅,又是t=0.25s 时质点偏离平稳位置的位移,振幅A=0.2m, 位移 y=-0.2m;OC 表示质点振动的周期,大小 T=1.0s;( 2)甲图中的 OAB 段图线表示 O 到 B 之间的各质点在t=1.0s
24、时相对平稳位置的位移,OA 间各质点正向着平稳位置运动,AB 间各质点正在远离平稳位置运动;乙图中的OAB 段图线表示该质点在t=00.5s 时间内振动位移随时间变化的情形,在00.25s 内该质点正远离平稳位置运动,在0.25s0.2s 内该质点正向平稳位置运动;0.2y/m0.2y/m1.25( 3)由 v= /t 可得波速v= 41m/s= 4m/s0-0.21234x/m00.51-0.2t/ s( 4)再过 0.25s,波动图象向右平移x=vt=0.254m=1m=/4;振动图象在原有的 基础上向后延长 T/4 ,图象分别如图 6-11 丙、丁所示丙丁图 6-10( 5)已知波的传播
25、方向(或某质点的振动方向)判定图象上该时刻各质点的振动方向(或波的传播方向) ,常用方法如下:a. 带动法: 依据波动过程的特点, 利用靠近波源的点带动它邻近的离波源稍远的点的特性,在被判定振动方向的点P 邻近图象上靠近波源一方找一点P,如在 P 点的上方,就 P带动 P 向上运动,如下列图;如P在 P 点的下方,就P带动 P 向下运动;b. 微平移法:将波形沿波的传播方向做微小移动x/4,依据质点 P 相对平稳位置位移的变化情形判定质点P 的运动方向;c. 口诀法:沿波的传播方向看, “上山低头,下山抬头” ,其中“低头”表示质点向下运动,“抬头” 表示质点向上运动;故 P 向上振动;说明
26、:波动图象和振动图象的外形相像,都是正弦或余弦曲线,其物理意义有本质的区分,但它们之间又有联系,由于参加波动的质点都在各自的平稳位置邻近振动,质点振动的周期也等于波动的周期;【例 9】如图 6 11 所示,一列在x 轴上传播的横波t0 时刻的图线用实线表示,经 t 0.2s 时,其图线用虚线表示;已知此波的波长为2m,就以下说法正确选项: ()A. 如波向右传播, 就最大周期为 2sB. 如波向左传播, 就最大周期为 2sC. 如波向左传播, 就最小波速是 9m/sD. 如波速是 19m/s,就波的传播方向向左0.2mx图 6 11分析 :第一题目中没有给出波的传播方向,因而应分为两种情形争论
27、;例如波向右传播,图中实线所示横波经过0.2s 传播的距离可以为0.2m, 0.2+ m, 0.2+2 m ,其波形图均为图中虚线所示;因而不论求周期最小值仍是求周期的最大值,都可以先写出通式再争论求解;解答 :假如波向右传播,传播的距离为(0.2+n ) m( n 1,2,3 ),就传播速度为vs0.22nm/s,取 n=0 时对应最小的波速为1m/s,依据周期T,得最大的周期t0.2v为 2s;因此选项 A 是正确的;假如波向左传播,传播的距离为(n 0.2 ) m( n=1,2,3 ) ,就传播速度为s2 n0.2vm/s ,取 n=1 时对应最小的波速为9m/s ,依据周期t0.22T
28、,得最大的周v期为s;因此选项 C 是正确的, B 是错误的;在向左传播的波速表达式中,当取n=2 时,9运算得波速为 19 m/s,因此选项 D 是正确的;说明:1. 在已知两个时刻波形图争论波的传播问题时,由于波的传播方向有两种可能, 一般存在两组合理的解; 又由于波的传播在时间和空间上的周期性,每组解又有多种可能性;为此,这类问题的解题思路一般为:先依据波的图象写出波的传播距离的通式,再依据波速公式列出波速或时间的通式,最终由题目给出的限制条件,挑选出符合条件的解;2. 此题仍可以直接考虑:例如对选项A :由于波长肯定,如周期最大,就波速必最小, 波在相同时间内(0.2s)传播距离必最短
29、,即为0.2m;由此可知最小波速为1m/s,从而依据波速公式可求出最大周期为2s;其它各选项同理考虑;这样做的主要依据是波是匀速向前传播的,紧抓波速、传播距离、传播时间三者的关系,其实波速公式也是这三者关系的一个体 现;【例 10】绳中有列正弦横波,沿x 轴传播,图中 612 中 a、b 是绳上两点,它们在x轴方向上的距离小于一个波 长;a、b 两点的振动图象如图6 13 所示;试在图 6 12 上 a、b 之间画出 t=1.0s 时的波形图;分析 :第一我们先由振动图象确定 t=1.0s 时 a、 b 两质点在波形图上的位置以及振动yx0abyab0246t/s方向,然后在一列已经画好的图
30、6-12图 6-13常规波形图上按题意截取所需波形既可;由于题中没给波的传播方向,所以要分两种情形争论;解答 :由振动图象可知: t=1.0s 时,质点 a 处于正向最大位移处(波峰处) ,质点 b 处于平稳位置且向下振动;先画出一列沿x 轴正方向传播的波形图,如图6 14 所示;在图左侧波峰处标出a 点; b 点在 a 的右测,到 a 点距离小于 1 个波长的平稳位置,即可能是b1、b2 两种情形;而振动方向向下的点只有b2;题中所求沿 x 轴正方向传播的波在a、b 之间的波形图即为图 6 14 中 ab2 段所示;画到原题图上时波形如图6 15 甲(实线)所示;avb1b2yav 甲v 乙
31、乙b0t/ s图 6-14甲图 6-15同理可以画出波沿x 轴负方向传播在 a、b 之间的波形图,如图615 乙(虚线)所示;说明 :1. 分析解决此题的关键是要搞清晰振动图象和波动图象的区分和联系;振动图象具体描述了质点位移随时间的变化,但要找该质点在波中的位置,就必需关怀所画波形图对应哪个时刻,进而由振动图象找到在这个时刻该质点的位置及振动方向;假如已知质点的振动方向、机械波的传播方向和机械波的波形中的任意两个,就可以对第三个进行判定,这也是贯穿整个机械波这部分内容的基本思路和方法;值得留意的是:如果已知质点的振动方向、 波的传播方向, 再判定机械波的波形时,由于机械波传播的周期性,可能造
32、成波形的多解; 例如此题中没有 “ a、b 在 x 轴方向上的距离小于一个波长”这个条件, 就会造成多解现象;此题仍可以利用“同侧法”来画y图;“同侧法” 是来判定质点的振动方向、机械波的传播方向和机械波的波形三者关系的方法;0其结论是:质点的振动方向、机v 波yv波xx0械波的传播方向必在质点所在波形图线的同一侧;例如图616甲 所示是一列沿 x 轴正方向传播的简谐波图象, 如其上 M 点M图 6-16(甲)v 波Mv 波图 6-16(乙)的振动方向向下,就该点的振动方向与波的传播方向在M 点所在图线的同侧;如图 616(乙)图所示,如其上M 点的振动方向向上,y就该点的振动方向与波的传播方
33、向在M 点所在图线的两侧;依据a“同侧法”的判定,质点M 的振动方向向下;v 波对于此题中沿 x 轴正方向传播的情形,由于质点b 振动方向0bx向下,波沿 x 轴正方向传播,为保证波传播方向、质点振动方向在该点图线的“同侧” ,波形图只能是图6 17 中实线所示;图线v 振图 6-17如为虚线所示, 就波传播方向、 质点振动方向在该点图线的“两侧”;同理对沿 x 轴负方向传播的情形;有时我们仍可以用图像平移法画图;【例 19】从一条弦线的两端,各发生一如图6 24 所示的脉冲横波,它们均沿弦线传播,速度相等,传播方向相反;已知这两个脉冲的宽度均为L,当左边脉冲的前端到达弦中的a 点时,右边脉冲
34、的前端正好到达与a 相距 L/2 的 b 点;请画出此时弦线上的脉冲波形;分析 :依据波的叠加原理:当左边的脉冲波前端向右传播到 a 点,而右边的脉冲前端向左传到b 点,此时,a两列脉冲波有半个波长是重叠的;在重叠的区域内,即b在 a、b 之间,当左脉冲引起质点振动的位移方向向下时, 而右脉冲引起质点振动的位移方向向上,或反之,但位ab图 625移大小相等,叠加结果相互抵消,此时弦线上显现的波形如图 625 所示;说明 :此题是依据波的叠加原理而求解的;“叠加”的核心是位移的叠加,即在叠加区域内每一质点的振动位置由合位移打算;质点振动速度由合速度打算;【例 20】如图 6 26 所示, S1、
35、S2 是振动情形完全相同的两个机械波波源,振幅为 A,a、b、c 三点分别位于 S1 、S2 连线的中垂线上,且ab bc;某时刻 aS1abc是 两 列 波 的 波 峰 相 遇 点 , c是 两 列 波 的 波 谷 相 遇 点 , 就()A、a 处质点的位移始终为2A B、 c 处质点的位移始终为2A C、 b 处质点的振幅为 2AD、 c 处质点的振幅为2AS2分析 :由于两个波源的频率相同,振动情形也相同,而a、b、图 6-26c 三点分别到两个波源的距离之差均为0,依判定条件可知该三个点的振动都是加强的,即各点振动的振幅均为两波振幅之和2A;解答 :选项 CD 是正确的;说明 : 对于
36、稳固的干涉现象中的振动始终加强的点,应懂得为两列波传到该点的振动位移及振动方向完全一样,使得该点的振动猛烈,表现为该质点振动的振幅始终最大,而不是位移最大;如此题中的 a 点此时刻在波峰处,但过1/4 周期该点会振动到平稳位置;b 点位于 ac 中点,该时刻它位于平稳位置,但过1/4 周期该点会振动到波峰位置;所以a、b、c 所在这条线为振动加强区域;对于稳固的干涉现象中的振动始终减弱的点,应懂得为两列波传到该点的振动位移及振动方向相反,使得该点的振动减弱,表现为该质点振动的振幅始终最小,而不是位移最小;【例 22】关于多普勒效应的表达,以下说法正确选项()A. 产生多普勒效应的缘由是波源频率
37、发生了变化B. 产生多普勒效应的缘由是观看者和波源之间发生了相对运动C. 甲乙两车相向行驶, 两车均鸣笛, 且发出的笛声频率相同, 乙车中的某旅客听到的甲车笛声频率低于他听到的乙车笛声频率D. 波源静止时,不论观看者是静止的仍是运动的,对波长“感觉 ”的结果是相等的【例 23】依据多普勒效应, 我们知道当波源与观看者相互接近时,观看者接收到的频率增大; 假如二者远离,观看者接收到的频率减小;由试验知道遥远的星系所生成的光谱都出现“红移”,即谱线都向红色部分移动了一段距离,由此现象可知()A 、宇宙在膨胀B、宇宙在收缩C、宇宙部分静止不动D、宇宙只发出红光光谱【例 24】声纳(水声测位移)向水中发出的超声波,遇到障碍物(如鱼群、潜艇、礁石等)后被反射,测动身出超声波到接收到反射波的时间及方向,即可算出障碍物的方位,;雷达就向空中发射电磁波,遇到障碍物后被反射,同样依据发射电磁波到接收到反射波的时间及方向,即可算出障碍物的方位;超声波与电磁波相比较,以下说法正确选项()A. 超声波和电磁波在传播时,都向外传递能量,但超声波不能传递信息B. 这两种波都可以在介质中传播,也可以在真空中传播C. 在真空中传播的速度与在其他介质中传播的速度相比较,这两种波在空气中传播时具有较大的传播速度D 这两列波传播时,在一个周期内向前传播一个拨长