专题22数列中的探究性问题(解析版).docx

上传人:公** 文档编号:12399542 上传时间:2022-04-24 格式:DOCX 页数:14 大小:207.82KB
返回 下载 相关 举报
专题22数列中的探究性问题(解析版).docx_第1页
第1页 / 共14页
专题22数列中的探究性问题(解析版).docx_第2页
第2页 / 共14页
点击查看更多>>
资源描述

《专题22数列中的探究性问题(解析版).docx》由会员分享,可在线阅读,更多相关《专题22数列中的探究性问题(解析版).docx(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、专题22 数列中的探究性问题数列中的探究性问题实际上就是不定方程解的问题,对于此类问题的求解,通常有以下三种常用的方法:利用等式两边的整数是奇数还是偶数的方法来加以判断是否存在;利用寻找整数的因数的方法来进行求解,本题的解题思路就是来源于此;通过求出变量的取值范围,从而对范围内的整数值进行试根的方法来加以求解对于研究不定方程的解的问题,也可以运用反证法,反证法证明命题的基本步骤:反设:设要证明的结论的反面成立作反设时要注意把结论的所有反面都要写出来,不要有遗漏归谬:从反设出发,通过正确的推理得出与已知条件或公理、定理矛盾的结论存真:否定反设,从而得出原命题结论成立一、题型选讲题型一 、数列中项

2、存在的问题 例1、(2018无锡期末)已知数列an满足,nN*,Sn是数列an的前n项和(1) 求数列an的通项公式;(2) 若ap,30,Sq成等差数列,ap,18,Sq成等比数列,求正整数p,q的值;(3) 是否存在kN*,使得为数列an中的项?若存在,求出所有满足条件的k的值;若不存在,请说明理由 (1)利用关系式对一切nN*恒成立,通过赋值,整体处理,将复杂的递推关系式转化为an与an1的关系式,根据定义可求得数列an的通项公式,这也是处理复杂递推数列关系式常用的方法;(2)利用等差中项、等比中项的性质得到关于正整数p,q的方程,通过简单的分类讨论即可解决;(3)本题的难点在于对式子m

3、1的处理,两边平方得k23k18m22m1,两边同乘以4得4k212k724m28m4,分组配方得(2m2)2(2k3)263,利用平方差公式因式分解得(2m2k5)(2m2k1)63,因式分解及一定的代数变形技巧是解决这类不定方程问题的关键规范解答 (1) 因为,nN*,所以当n1时,1,所以a12,(1分)当n2时,由和,两式相除可得1,即anan11(n2),所以,数列an是首项为2,公差为1的等差数列,于是,ann1.(4分)(2) 因为ap,30,Sq成等差数列,ap,18,Sq成等比数列,所以于是或(7分)当时,解得当时,无正整数解,所以p5,q9.(10分)(3)假设存在满足条件

4、的正整数k,使得am(mN*),则m1,平方并化简得,(2m2)2(2k3)263,(11分)则(2m2k5)(2m2k1)63,(12分)所以或或(14分)解得m15,k14或m5,k3或m3,k1(舍去)综上所述,k3或14.(16分)例2、(2019苏州期初调查)已知数列an的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列,数列an前n项和为Sn,且满足S3a4,a5a2a3.(1) 求数列an的通项公式;(2) 若amam1am2,求正整数m的值;(3) 是否存在正整数m,使得恰好为数列an中的一项?若存在,求出所有满足条件的m值,若不存在,说明理由 (1)建立方程组,求出公比

5、和公差,用分段的形式写出an的通项公式(2)对m分奇、偶数,根据通项公式和amam1am2建立方程,求出m的值(3)运用求和公式求出S2m和S2m1,计算,通过分析其值只能为a1,a2,a3,分情况讨论,解方程,求m的值规范解答 (1)设奇数项的等差数列公差为d,偶数项的等比数列公比为q.所以数列an的前5项依次为1,2,1d,2q,12d.因为所以解得(2分)所以an(4分)(2)因为amam1am2.1若m2k(kN*),则a2ka2k1a2k2,所以23k1(2k1)23k,即2k13,所以k1,即m2.(6分)2若m2k1(kN*),则a2k1a2ka2k1,所以(2k1)23k12k

6、1,所以23k11.因为23k1为整数,所以必为整数,所以2k11,所以k1,此时2303.不合题意(8分)综上可知m2.(9分)(3) 因为S2m(a1a3a2m1)(a2a4a2m)3mm21.(10分)S2m1S2ma2m3mm2123m13m1m21.(11分)所以33.(12分)若为数列an中的项,则只能为a1,a2,a3.11,则31,所以3m10,m无解(13分)22,则32,所以3m11m20.当m1时,等式不成立;当m2时,等式成立;当m3时,令f(x)3x11x23x1x2.所以f(x)3x2x,f(x)3x2.因为f(x)在(14分)33,则33,所以m210,即m1.(

7、15分)综上可知m1或m2.(16分)题型二、 数列中的等差数列或者等比数列的存在问题例3、(2018扬州期末)已知各项都是正数的数列an的前n项和为Sn,且2Snaan,数列bn满足b1,2bn1bn.(1) 求数列an,bn的通项公式;(2) 设数列cn满足cn,求和c1c2cn;(3) 是否存在正整数p,q,r(pqr),使得bp,bq,br成等差数列?若存在,求出所有满足要求的p,q,r;若不存在,请说明理由规范解答 (1) 2Snaan,2Sn1aan1,得2an1aaan1an,即(an1an)(an1an1)0.因为an是正数数列,所以an1an10,即an1an1,所以an是等

8、差数列,其中公差为1.在2Snaan中,令n1,得a11,所以ann.(2分)由2bn1bn得,所以数列是等比数列,其中首项为,公比为,所以,即bn.(5分)(注:也可累乘求bn的通项)(2) 由(1)得cn,所以cn,(7分)所以c1c2cn.(9分)(3) 假设存在正整数p,q,r(pqr),使得bp,bq,br成等差数列,则bpbr2bq,即.因为bn1bn,所以数列bn从第二项起单调递减当p1时,.若q2,则,此时无解;若q3,则,且bn从第二项起递减,故r4,所以p1,q3,r4符合要求;(11分)若q4,则2,即b12bq,又因为b1br2bq,所以b12bq,矛盾此时无解(12分

9、)当p2时,一定有qp1.若qp2,则2,即bp2bq,这与bpbr2bq矛盾,所以qp1.此时,则r2rp.令rpm1,则r2m1,所以p2m1m1,q2m1m,mN*.综上得,存在p1,q3,r4或p2m1m1,q2m1m,r2m1(mN*)满足要求(16分)例4、(2019常州期末)已知数列an中,a11,且an13an40,nN*.(1) 求证:an1是等比数列,并求数列an的通项公式;(2) 数列an中是否存在不同的三项按照一定顺序重新排列后,构成等差数列?若存在,求满足条件的项;若不存在,说明理由规范解答 (1) 由an13an40得an113(an1),nN*.(2分)其中a11

10、,所以a1120,可得an10,nN*.(4分)所以3,nN*,所以an1是以2为首项,3为公比的等比数列(6分)所以an12(3)n1,即an2(3)n11,则数列an的通项公式为an2(3)n11,nN*.(8分)(2)若数列an中存在三项am,an,ak(mnk)符合题意,其中kn,km,nm都是正整数(9分)分以下三种情形:am位于中间,则2amanak,即22(3)n112(3)k11,所以2(3)m(3)n(3)k,两边同时除以(3)m得2(3)nm(3)km,等式右边是3的倍数,等式不成立,舍去;an位于中间,则2anamak,即22(3)m112(3)k11,所以2(3)n(3

11、)m(3)k,两边同时除以(3)m得2(3)nm1(3)km,即12(3)nm(3)km,等式右边是3的倍数,等式不成立,舍去;ak位于中间,则2akaman,即22(3)m112(3)n11,所以2(3)k(3)m(3)n,两边同时除以(3)m,得2(3)km1(3)nm,即12(3)km(3)nm,等式右边是3的倍数,等式不成立,舍去(15分)综上可得,数列an中不存在三项满足题意(16分)题型三、数列中的有序实数对的问题例5、(2018苏中三市、苏北四市三调)已知数列满足,数列的前项和为(1)求的值;(2)若 求证:数列为等差数列; 求满足的所有数对【思路分析】(1)直接令得到关系式,两

12、式相减,求出的值(2) 分别赋值,得到关系式,两式相减,得到,结合,计算出,从而求,代入关系式,得出,利用定义法证明为等差数列(3) 求和得到,代入关系式整理得,需要转化两个因数相乘的形式,变形处理,利用平方差公式得到,因为且均为正整数,则两个因数只能为27和1,从而求出的值.规范解答 (1)由条件,得,-得 3分 (2)证明:因为,所以,-得 , 6分于是,所以,从而 8分所以,所以,将其代入式,得,所以(常数),所以数列为等差数列 10分注意到,所以, 12分由知 所以,即,又,所以且均为正整数,所以,解得,所以所求数对为 16分题型四、数列中的参数的问题例6、(2019苏州期末)定义:对

13、于任意nN*,xnxn2xn1仍为数列xn中的项,则称数列xn为“回归数列”(1) 已知an2n(nN*),判断数列an是否为“回归数列”,并说明理由;(2) 若数列bn为“回归数列”,b33,b99,且对于任意nN*,均有bnbn1成立求数列bn的通项公式;求所有的正整数s,t,使得等式bt成立 (1) 验证anan2an1是否是数列an中的项对于否定结论也可举反例(2) 利用数列bn是单调递增数列,可得数列bn等差数列,易得bnn;先得(1,3,从而t的可能取值为2或3. 解:(1) 假设an是“回归数列”,则对任意nN*,总存在kN*,使anan2an1ak成立,即2n42n22n2k,

14、即32n2k,(2分)此时等式左边为奇数,右边为偶数,不成立,所以假设不成立,所以an不是“回归数列”;(4分)(2) 因为bnbn1,所以bn1bn且bnbn2bn1bn2(bn1bn)bn2.又因为bn为“回归数列”,所以bnbn2bn1bn1,即bnbn22bn1,所以数列bn为等差数列(6分)又因为b33,b99,所以bnn(nN*)(8分)(注:猜出bnn给1分)因为bt,所以t,(*)因为t30,所以t3,又因为tN*,所以t1,2,3.(10分)当t1时,(*)式整理为3s0,不成立(11分)当t2时,(*)式整理为1.设cn(nN*),因为cn1cn,所以n1时,cncn1.所

15、以(cn)maxc2Mn1,mnMn1an1,则anan1a2a1,而此时有mnmn1a1,不合题意,故两不等式中至少有一个取等号若d0,则必有MnMn1,所以anMnMn1an1,即对n2,nN*,都有anan1,所以Mnan,mna1,bnbn1d,所以anan12d,即an为等差数列(7分)若d0时,则必有mnmn1,所以anmnmn1an1,即对n2,nN*,都有anMn时,则Mn1an1,mn1mn,此时an1Mn1Mnan,所以an1an对nN*恒成立,则Mnan,mn1mna1,所以bn1bnp,即an1an2p,为常数,则数列an是等差数列(7分)若mnan1Mn时,则Mn1M

16、n,mn1mn, 所以bn1bn.因为数列bn是等差数列且bnpnq,所以p0,bnq,所以Mn1MnMn1M1a1q,mn1mnmn1m1a1q,所以qan1q,即anq,即an为常数数列,所以数列an是公差为0的等差数列(8分)若an1mn时,则Mn1Mn,mn1an1,此时an1mn1mnan,所以an10,nN*)当q2,且a11时,求a4的值;若存在互不相等的正整数r,s,t,满足2srt,且ar,as,at成等差数列,求q的值;(2) 设数列an的前n项和为bn,数列bn的前n项和为cn,cnbn23,nN*,若a11,a22,且|aanan2|k恒成立,求k的最小值规范解答 (1

17、)由a4a34,a3a22,a2a11,a11,累加得a48.(3分)因an1anqn1,所以n2时,anan1qn2,a2a11.(i)当q1时,ann1a1 (n2)又因为a1满足ann1a1,所以ann1a1 (nN*)因为2srt,所以2asarat,所以q1满足条件(ii)当q1且q0时,ana1 (n2)又因为a1满足ana1,所以ana1 (nN*.(5分)因为2srt,若存在r,s,t满足条件,即2asarat,化简得2qsqrqt,则2qrsqts22,此时rts,这与r,s,t互不相等矛盾所以q1且q0不满足条件(7分)综上所述,符合条件q的值为1. (8分)(2)由cnb

18、n23,nN*,可知cn1bn33,两式作差可得bn3bn2bn1.又因为a11,a22,所以b11,b23,从而c11,c24,可得b34,b47,故b3b2b1,所以bn2bn1bn对一切的nN*恒成立(11分)对bn3bn2bn1,bn2bn1bn两式进行作差可得an3an2an1.又由b34,b47,可知a31,a43,故an2an1an,(n2)(13分)又由aan1an3(an1an)2an1(an2an1)(an1an)2an1(an2an1)aanan2,n2,所以|aan1an3|aanan2|,(15分)所以当n2时,|aanan2|5,当n1时|aanan2|3,故k的最

19、小值为5.(16分)6、(2017南京学情调研)已知数列an是公差为正数的等差数列,其前n项和为Sn,且a2a315,S416.(1) 求数列an的通项公式(2) 设数列bn满足b1a1,bn1bn.求数列bn的通项公式;是否存在正整数m,n(mn),使得b2,bm,bn成等差数列?若存在,求出m,n的值;若不存在,请说明理由规范解答 (1) 设数列an的公差为d,则d0.由a2a315,S416,得解得或(舍去)所以an2n1.(4分)(2) 因为b1a11,bn1bn, (6分)即b2b1,b3b2,bnbn1,n2,累加得bnb1,(9分)所以bnb11.又b11也符合上式,故bn,nN*.(11分)假设存在正整数m,n(mn),使得b2,bm,bn成等差数列,则b2bn2bm.又b2,bn,bm,所以2,即,化简得2m7.(14分)当n13,即n2时,m2(舍去);当n19,即n8时,m3,符合题意所以存在正整数m3,n8,使得b2,bm,bn成等差数列(16分)

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁