《最新人教版九年级数学上21.2.2公式法ppt公开课优质教学课件.ppt》由会员分享,可在线阅读,更多相关《最新人教版九年级数学上21.2.2公式法ppt公开课优质教学课件.ppt(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、21.2 解一元二次方程第二十一章 一元二次方程导入新课讲授新课当堂练习课堂小结21.2.2 公式法学习目标1.经历求根公式的推导过程.(难点)2.会用公式法解简单系数的一元二次方程.(重点)3.理解并会计算一元二次方程根的判别式.4.会用判别式判断一元二次方程的根的情况.导入新课导入新课复习引入1.用配方法解一元二次方程的步骤有哪几步?2.如何用配方法解方程2x2+4x+1=0?讲授新课讲授新课 求根公式的推导一 任何一个一元二次方程都可以写成一般形式 ax2+bx+c=0 ()能否也用配方法得出()的解呢?用配方法解一般形式的一元二次方程 ax2+bx+c=0 (a0). 方程两边都除以a
2、 解:移项,得配方,得222.22bbcbxxaaaa 即2224.24bbacxaa 2axbxc ,2bcxxaa ,用配方法解一般形式的一元二次方程 ax2+bx+c=0 (a0).24.2bbacxa 24.22bbacxaa 即一元二次方程一元二次方程的求根公式的求根公式特别提醒a 0,4a20, 当b2-4ac 0时,用配方法解一般形式的一元二次方程 ax2+bx+c=0 (a0).a 0,4a20, 当b2-4ac 0时,22240.24bbacxaa 而x取任何实数都不能使上式成立.因此,方程无实数根. 由上可知,一元二次方程ax2+bx+c=0 (a0)的根由方程的系数a,b
3、,c确定因此,解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0 (a0) ,当b2-4ac 0 时,将a,b,c 代入式子 就得到方程的根,这个式子叫做一元二次方程的求根公式,利用它解一元二次方程的方法叫做公式法,由求根公式可知,一元二次方程最多有两个实数根.2.42bbacxa 用公式法解一元二次方程的前提是: 1.必需是一般形式的一元二次方程: ax2+bx+c=0(a0); 2.b2-4ac0.注意 公式法解方程二 例1 用公式法解方程程 5x2-4x-12=0解:a=5,b=-4,c=-12,b2-4ac=(-4)2-45(-12)=2560.242bbacxa 242b
4、bacxa典例精析( 4)25641628=25105 1262,5xx 242bbacxa 例2 解方程:232 3xx化简为一般式:22330 xx 1-2 33.abc、解:(),2242 34130bac 即 :123.xx 这里的a、b、c的值是什么?(-2 3)2 303.2 12x 例3 解方程:4x2-3x+2=0224,3,2.4( 3)4 4 2932230.abcbac 因为在实数范围内负数不能开平方,所以方程无实数根.解:要点归纳公式法解方程的步骤 1.变形: 化已知方程为一般形式; 2.确定系数:用a,b,c写出各项系数; 3.计算: b2-4ac的值; 4.判断:若
5、b2-4ac 0,则利用求根公式求出; 若b2-4ac 0 = 0 0.所以所以方程5y2+1=8y的有两个不相等的实数根.这里这里a=5,b=-8,c=1,能力提升: 在等腰ABC 中,三边分别为a,b,c,其中a=5,若关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根,求ABC 的周长.解:关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根,所以所以= =b24ac=(b-2)2-4(6-b)=b2+8b-20=0.所以b=-10或或b=2.将b=-10代入原方程得x2-8x+16=0,x1=x2=4;将b=2代入原方程得x2+4x+4=0,x1=x2=-2(不符题设,舍去););所以所以ABC 的三边长为的三边长为4,4,5,其周长为,其周长为4+4+5= =13.课堂小结课堂小结公式法求 根公 式步 骤一化(一般形式);二定(系数值);三求( 值); 四判(方程根的情况);五代(求根公式计算).242bbacxa根的判别式b2-4ac务必将方程化为一般形式见本课时练习课后作业课后作业