《高中数学必修1第二章课后习题解答.doc》由会员分享,可在线阅读,更多相关《高中数学必修1第二章课后习题解答.doc(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、微信公众号搜索:踽踽学者 获取更多免费资料!新课程标准数学必修1第二章课后习题解答第二章 基本初等函数(I)21指数函数练习(P54)1. a=,a=,a=,a= .2. (1)=x, (2)=(a+b), (3)=(m-n),(4)=(m-n)2,(5)=p3q,(6)=m=m.3. (1)()=()2=()3=;(2)2=23()(322)=23=23=6;(3)aaa=a=a; (4)2x(x-2x)=x-4x=1-4x-1=1.练习(P58)1.如图 图2-1-2-142.(1)要使函数有意义,需x-20,即x2,所以函数y=3的定义域为x|x2;(2)要使函数有意义,需x0,即函数y
2、=()的定义域是xx0.3.y=2x(xN*)习题2.1 A组(P59)1.(1)100;(2)-0.1;(3)4-;(4)x-y.2解:(1)=a0b0=1.(2)=a.(3)=m0=1.点评:遇到多重根号的式子,可以由里向外依次去掉根号,也可根据幂的运算性质来进行.3.解:对于(1),可先按底数5,再按键,再按12,最后按,即可求得它的值.答案:1.710 0;对于(2),先按底数8.31,再按键,再按12,最后按即可. 答案:2.881 0;对于(3)这种无理指数幂,先按底数3,再按键,再按键,再按2,最后按即可.答案:4.728 8;对于(4)这种无理指数幂,可先按底数2,其次按键,再
3、按键,最后按即可.答案:8.825 0.4.解:(1)aaa=a=a; (2)aaa=a=a;(3)(xy)12=x4y-9;(4)4ab(ab)=(4)=-6ab0=-6a;(5)=;(6)(-2xy)(3xy)(-4xy)=-23(-4)x=24y;(7)(2x+3y)(2x-3y)=(2x)2-(3y)2=4x-9y;(8)4x (-3xy)(-6xy)=2xy.点评:进行有理数指数幂的运算时,要严格按法则和运算顺序,同时注意运算结果的形式,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.5.(1)要使函数有意义,需3-xR,即xR,所以函数y=23-x的定义域为R.(2)要使
4、函数有意义,需2x+1R,即xR,所以函数y=32x+1的定义域为R.(3)要使函数有意义,需5xR,即xR,所以函数y=()5x的定义域为R.(4)要使函数有意义,需x0,所以函数y=0.7的定义域为x|x0.点评:求函数的定义域一是分式的分母不为零,二是偶次根号的被开方数大于零,0的0次幂没有意义.6.解:设经过x年的产量为y,一年内的产量是a(1+),两年内产量是a(1+)2,x年内的产量是a(1+)x,则y=a(1+)x(xN*,xm).点评:根据实际问题,归纳是关键,注意x的取值范围.7.(1)30.8与30.7的底数都是3,它们可以看成函数y=3x,当x=0.8和0.7时的函数值;
5、因为31,所以函数y=3x在R上是增函数.而0.70.8,所以30.70.75,所以函数y=0.75x在R上是减函数.而-0.10.1,所以0.750.11,所以函数y=1.01x在R上是增函数.而2.73.5,所以1.012.71.013.5.(4)0.993.3与0.994.5的底数都是0.99,它们可以看成函数y=0.99x,当x=3.3和4.5时的函数值;因为0.991,所以函数y=0.99x在R上是减函数.而3.34.5,所以0.994.51,所以函数y=2x在R上是增函数.因为2m2n,所以mn.(2)0.2m,0.2n可以看成函数y=0.2x,当x=m和n时的函数值;因为0.21
6、,所以函数y=0.2x在R上是减函数.因为0.2mn.(3)am,an可以看成函数y=ax,当x=m和n时的函数值;因为0a1,所以函数y=ax在R上是减函数.因为amn.(4)am,an可以看成函数y=ax,当x=m和n时的函数值;因为a1,所以函数y=ax在R上是增函数.因为aman,所以mn.点评:利用指数函数的单调性是解题的关键.9.(1)死亡生物组织内碳14的剩余量P与时间t的函数解析式为P=().当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量为P=()=()90.002.答:当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量约为死亡前含量的2,因此,还能用一般的放射
7、性探测器测到碳14的存在.(2)设大约经过t万年后,用一般的放射性探测器测不到碳14,那么()5.7.答:大约经过6万年后,用一般的放射性探测器是测不到碳14的.B组1. 当0a1时,a2x-7a4x-12x-74x1x3;当a1时,a2x-7a4x-12x74x1x3.综上,当0a1时,不等式的解集是x|x3;当a1时,不等式的解集是x|x3.2.分析:像这种条件求值,一般考虑整体的思想,同时观察指数的特点,要注重完全平方公式的运用.解:(1)设y=x+x,那么y2=(x+x)2=x+x-1+2.由于x+x-1=3,所以y=.(2)设y=x2+x-2,那么y=(x+x-1)2-2.由于x+x
8、-1=3,所以y=7.(3)设y=x2-x-2,那么y=(x+x-1)(x-x-1),而(x-x-1)2=x2-2+x-2=,所以y=3.点评:整体代入和平方差,完全平方公式的灵活运用是解题的突破口.3.解:已知本金为a元.1期后的本利和为y1=a+ar=a(1+r),2期后的本利和为y2=a(1+r)+a(1+r)r=a(1+r)2,3期后的本利和为y3=a(1+r)3,x期后的本利和为y=a(1+r)x.将a=1 000,r=0.022 5,x=5代入上式得y=a(1+r)x=1 000(1+0.022 5)5=1 0001.022551118.答:本利和y随存期x变化的函数关系式为y=a
9、(1+r)x,5期后的本利和约为1 118元.4.解:(1)因为y1=y2,所以a3x+1=a-2x.所以3x+1=-2x.所以x=.(2)因为y1y2,所以a3x+1a-2x.所以当a1时,3x+1-2x.所以x.当0a1时,3x+1-2x.所以xlog66=1,所以log671.又因为log76log77=1,所以log76log76.(2)因为log3log33=1,所以log31.又因为log20.8log20.8.7.证明:(1)因为f(x)=3x,所以f(x)f(y)=3x3y=3x+y.又因为f(x+y)=3x+y,所以f(x)f(y)=f(x+y).(2)因为f(x)=3x,所
10、以f(x)f(y)=3x3y=3x-y.又因为f(x-y)=3x-y,所以f(x)f(y)=f(x-y).8.证明:因为f(x)=lg,a、b(-1,1),所以f(a)+f(b)=lg=lg,f()=lg()=lg=lg.所以f(a)+f(b)=f().9.(1)设保鲜时间y关于储藏温度x的函数解析式为y=kax(a0,且a1).因为点(0,192)、(22,42)在函数图象上,所以解得所以y=1920.93x,即所求函数解析式为y=1920.93x.(2)当x=30 时,y22(小时);当x=16 时,y60(小时),即温度在30 和16 的保鲜时间约为22小时和60小时.(3)图象如图:图
11、2-210.解析:设所求幂函数的解析式为f(x)=x,因为f(x)的图象过点(2,),所以=2,即2=2.所以=.所以f(x)=x(x0).图略,f(x)为非奇非偶函数;同时它在(0,+)上是减函数.B组1.A2.因为2a=5b=10,所以a=log210,b=log510,所以+=+=lg2+lg5=lg10=1.3.(1)f(x)=a在x(-,+)上是增函数.证明:任取x1,x2(-,+),且x1x2.f(x1)-f(x2)=a-a+ =-=.因为x1,x2(-,+),所以又因为x1x2,所以即0.所以f(x1)-f(x2)0,即f(x1)f(x2).所以函数f(x)=a在(-,+)上是增
12、函数.(2)假设存在实数a使f(x)为奇函数,则f(-x)+f(x)=0,即a+a=0a=+=+=1,即存在实数a=1使f(x)=为奇函数.4.证明:(1)因为f(x)=,g(x)=,所以g(x)2-f(x)2=g(x)+f(x)g(x)-f(x)=exe-x=ex-x=e0=1,即原式得证.(2)因为f(x)=,g(x)=,所以f(2x)=,2f(x)g(x)=2=.所以f(2x)=2f(x)g(x).(3)因为f(x)=,g(x)=,所以g(2x)=,g(x)2+f(x)2=()2+()2=.所以g(2x)=f(x)2+g(x)2.5.由题意可知,1=62,0=15,当t=1时,=52,于
13、是52=15+(62-15)e-k,解得k0.24,那么=15+47e-0.24t. 所以,当=42时,t2.3;当=32时,t4.2.答:开始冷却2.3和4.2小时后,物体的温度分别为42 和32 .物体不会冷却到12 .6.(1)由P=P0e-kt可知,当t=0时,P=P0;当t=5时,P=(1-10%)P0.于是有(1-10%)P0=P0e-5k,解得k=ln0.9,那么P=P0e.所以,当t=10时,P=P0e=P0eln0.81=81%P0.答:10小时后还剩81%的污染物.(2)当P=50%P0时,有50%P0=P0e,解得t=33.答:污染减少50%需要花大约33h.(3)其图象大致如下:图2-3新课程标准数学必修1第二章课后习题解答(第10页共10页)