《2016年中考数学分类汇编二次函数压轴题(共30页).doc》由会员分享,可在线阅读,更多相关《2016年中考数学分类汇编二次函数压轴题(共30页).doc(31页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上2016年中考数学与二次函数有关的压轴题纵观2016年全国各省市中考数学试卷其中与二次函数有关的压轴题,其考点涉及:一次函数、二次函数的性质,函数图像上点的坐标与方程的关系;轴对称和等腰三角形的性质;特殊平行四边形性质;图形的旋转变换;相似三角形的性质;锐角三角函数应用;圆的性质;阅读理解,等.129数学思想涉及:分类讨论;数形结合;转化,等.现选取部分省市的2016年中考题展示,以飨读者.一、与特殊平行四边形性质的有关综合题【题1】(2016成都第28题)如图,在平面直角坐标系xOy中,抛物线y=a(x+1)23与x轴交于A,B两点(点A在点B的左侧),与y轴交于点
2、C(0,),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q两点,点Q在y轴的右侧(1)求a的值及点A,B的坐标;(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由【考点】二次函数综合题【分析】(1)把点C代入抛物线解析式即可求出a,令y=0,列方程即可求出点A、B坐标(2)先求出四边形ABCD面积,分两种情形:当直线l边AD相交与点M1时,根据S=10=3,求出点M1坐标即可解决问题当直线l边BC相交与
3、点M2时,同理可得点M2坐标(3)设P(x1,y1)、Q(x2,y2)且过点H(1,0)的直线PQ的解析式为y=kx+b,得到b=k,利用方程组求出点M坐标,求出直线DN解析式,再利用方程组求出点N坐标,列出方程求出k,即可解决问题【解答】解:(1)抛物线与y轴交于点C(0,)a3=,解得:a=,y=(x+1)23当y=0时,有(x+1)23=0,x1=2,x2=4,A(4,0),B(2,0)(2)A(4,0),B(2,0),C(0,),D(1,3)S四边形ABCD=SADH+S梯形OCDH+SBOC=33+(+3)1+2=10从面积分析知,直线l只能与边AD或BC相交,所以有两种情况:当直线
4、l边AD相交与点M1时,则S=10=3,3(y)=3y=2,点M1(2,2),过点H(1,0)和M1(2,2)的直线l的解析式为y=2x+2当直线l边BC相交与点M2时,同理可得点M2(,2),过点H(1,0)和M2(,2)的直线l的解析式为y=x综上所述:直线l的函数表达式为y=2x+2或y=x(3)设P(x1,y1)、Q(x2,y2)且过点H(1,0)的直线PQ的解析式为y=kx+b,k+b=0,b=k,y=kx+k由,+(k)xk=0,x1+x2=2+3k,y1+y2=kx1+k+kx2+k=3k2,点M是线段PQ的中点,由中点坐标公式的点M(k1, k2)假设存在这样的N点如图,直线D
5、NPQ,设直线DN的解析式为y=kx+k3由,解得:x1=1,x2=3k1,N(3k1,3k23)四边形DMPN是菱形,DN=DM,(3k)2+(3k2)2=()2+()2, 整理得:3k4k24=0,k2+10,3k24=0, 解得k=,k0,k=,P(31,6),M(1,2),N(21,1)PM=DN=2,PMDN,四边形DMPN是平行四边形,DM=DN,四边形DMPN为菱形,以DP为对角线的四边形DMPN能成为菱形,此时点N的坐标为(21,1)【题2】(2016泰安第28题)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点
6、E、B(1)求二次函数y=ax2+bx+c的表达式;(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行与y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;(3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标【考点】此题是二次函数综合题,主要考查了待定系数法求函数关系式,函数极值额确定方法,平行四边形的性质和判定,解本题的关键是建立函数关系式求极值【分析】(1)设出抛物线解析式,用待定系数法求解即可;(2)先求出直线AB解析式,设出点P坐标(x,x2+
7、4x+5),建立函数关系式S四边形APCD=2x2+10x,根据二次函数求出极值;(3)先判断出HMNAOE,求出M点的横坐标,从而求出点M,N的坐标【解答】解:(1)设抛物线解析式为y=a(x2)2+9,抛物线与y轴交于点A(0,5),4a+9=5,a=1,y=(x2)2+9=x2+4x+5,(2)当y=0时,x2+4x+5=0,x1=1,x2=5,E(1,0),B(5,0),设直线AB的解析式为y=mx+n,A(0,5),B(5,0),m=1,n=5,直线AB的解析式为y=x+5;设P(x,x2+4x+5),D(x,x+5),PD=x2+4x+5+x5=x2+5x,AC=4,S四边形APC
8、D=ACPD=2(x2+5x)=2x2+10x,当x=时,S四边形APCD最大=,(3)如图,过M作MH垂直于对称轴,垂足为H,MNAE,MN=AE,HMNAOE,HM=OE=1,M点的横坐标为x=3或x=1,当x=1时,M点纵坐标为8,当x=3时,M点纵坐标为8,M点的坐标为M1(1,8)或M2(3,8),A(0,5),E(1,0),直线AE解析式为y=5x+5,MNAE,MN的解析式为y=5x+b,点N在抛物线对称轴x=2上,N(2,10+b),AE2=OA2+0E2=26MN=AEMN2=AE2,MN2=(21)2+8(10+b)2=1+(b+2)2M点的坐标为M1(1,8)或M2(3,
9、8),点M1,M2关于抛物线对称轴x=2对称,点N在抛物线对称轴上,M1N=M2N,1+(b+2)2=26,b=3,或b=7,10+b=13或10+b=3当M点的坐标为(1,8)时,N点坐标为(2,13),当M点的坐标为(3,8)时,N点坐标为(2,3),【点评】此题是二次函数综合题,主要考查了待定系数法求函数关系式,函数极值额确定方法,平行四边形的性质和判定,解本题的关键是建立函数关系式求极值【题2】(2016东营第25题)参考答案:【题3】(2016扬州第28题)如图1,二次函数的图像过点A(-1,3),顶点B的横坐标为1.(1)求这个二次函数的表达式;(2)点P在该二次函数的图像上,点Q
10、在x轴上,若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;(3)如图3,一次函数(k0)的图像与该二次函数的图像交于O、C两点,点T为该二次函数图像上位于直线OC下方的动点,过点T作直线TMOC,垂足为点M,且M在线段OC上(不与O、C重合),过点T作直线TNy轴交OC于点N。若在点T运动的过程中,为常数,试确定k的值。 参考答案:(1) (2)P()或P() (3)k=二、与轴对称和等腰三角形性质有关的综合题【题4】(2016益阳第21题)如图,顶点为的抛物线经过坐标原点O,与轴交于点B(1)求抛物线对应的二次函数的表达式;(2)过B作OA的平行线交轴于点C,交抛物线于点,求证:
11、OCDOAB;(3)在轴上找一点,使得PCD的周长最小,求出P点的坐标考点:考查二次函数,三角形的全等、三角形的相似。解析:(1)抛物线顶点为, 设抛物线对应的二次函数的表达式为, 将原点坐标(0,0)代入表达式,得 抛物线对应的二次函数的表达式为: (2)将 代入中,得B点坐标为:, 设直线OA对应的一次函数的表达式为, 将代入表达式中,得, 直线OA对应的一次函数的表达式为BDAO,设直线BD对应的一次函数的表达式为,将B代入中,得 ,直线BD对应的一次函数的表达式为由得交点D的坐标为,将代入中,得C点的坐标为,由勾股定理,得:OA=2=OC,AB=2=CD, 在OAB与OCD中, OAB
12、OCD(3)点关于轴的对称点的坐标为,则与轴的交点即为点,它使得PCD的周长最小过点D作DQ,垂足为Q,则PODQ,即, 点的坐标为【题5】(2016哈尔滨第27题)如图,二次函数yax 2bx(a0)的图象经过点A(1,4),对称轴是直线x ,线段AD平行于x轴,交抛物线于点D在y轴上取一点C(0,2),直线AC交抛物线于点B,连结OA,OB,OD,BD (1)求该二次函数的解析式;(2)设点F是BD的中点,点P是线段DO上的动点,将BPF沿边PF翻折,得到BPF,使BPF与DPF重叠部分的面积是BDP的面积的 ,若点B在OD上方,求线段PD的长度;xyADCBOxyADCBOxyADCBO
13、(3)在(2)的条件下,过B作BHPF于H,点Q在OD下方的抛物线上,连接AQ与BH交于点M,点G在线段AM上,使HPN+DAQ =135,延长PG交AD于N若AN+ BM=,求点Q的坐标参考答案:(1)() A(1,4)C(0,2),B(-2,-2)D(-4,4)BD,由条件得P是PD的中点,四边形BFBP是菱形,PB=P在上,P(-1,1)PD=【题6】(2016临沂第26题)如图,在平面直角坐标系中,直线y=2x+10与x轴、y轴相交于A、B两点.点C的坐标是(8,4),连接AC、BC.(1)求过O、A、C三点的抛物线的解析式,并判断ABC的形状;(2)动点P从点O出发,沿OB以每秒2个
14、单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,PA=QA?(3)在抛物线的对称轴上,是否存在点M,使以A、B、M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由。参考答案:【题7】(2016天津第25题)参考答案:三、与图形的平移与旋转变换性质有关的综合题【题8】(2016重庆第26题)如图1,二次函数的图象与一次函数y=kx+b(k0)的图象交于A,B两点,点A的坐标为(0,1),点B在第一象限内,点C是二次函数图象的顶点,点M是一次函数y
15、=kx+b(k0)的图象与x轴的交点,过点B作x轴的垂线,垂足为N,且SAMOS四边形AONB=148。(1)求直线AB和直线BC的解析式;(2)点P是线段AB上一点,点D是线段BC上一点,PD/x轴,射线PD与抛物线交于点G,过点P作PEx轴于点E,PFBC于点F,当PF与PE的乘积最大时,在线段AB上找一点H(不与点A,点B重合),使GH+BH的值最小,求点H的坐标和GH+BH的最小值;(3)如图2,直线AB上有一点K(3,4),将二次函数沿直线BC平移,平移的距离是t(t0),平移后抛物线上点A,点C的对应点分别为点A/,点C/;当A/C/K是直角三角形时,求t的值。参考答案:(1)点A
16、的坐标为(0,1),AO=1。SAMOS四边形AONB=148,SAMOSBMN=149。由AMOBMN可知,AOBN=17。BN=7。令y=7,则,解得x1=6,x2=-2。点B在第一象限,点B的坐标为(6,7)。 (1分)将点A(0,1),B(6,7)代入y=kx+b中得,解得直线AB的解析式为y=x+1。(2分)点C是二次函数图象的顶点,点C的坐标为(2,-1)。 (3分)设直线BC的解析式为y=mx+n(m0),将点B(6,7),C(2,-1)代入得,解得。直线BC的解析式为y=2x-5。(4分)(2)设点P的坐标为(a,a+1)。则点D的坐标为(,a+1)。PE=a+1,PD=()-
17、a=。设直线BC与x轴的交点为点Q,由PDFBQN可知,PF=。(5分)PEPF=(a+1)=。0a0.试用含t的代数式表示点P的坐标;(3) 当动点P,Q在直线l上运动到使得AOQ与BPO的周长相等时,记作AOQ=m,若过点A的二次函数y=ax2+bx+c同时满足以下两个条件: 6a+3b+2c=0; 当mxm+2时,函数y的最大值等于,求二次项系数a的值.参考答案:六、与圆的性质有关的综合题【题14】(2016巴中第31题)如图,在平面直角坐标系中,抛物线y=mx2+4mx5m(m0)与x轴交于点A、B(点A在点B的左侧),该抛物线的对称轴与直线y=x相交于点E,与x轴相交于点D,点P在直
18、线y=x上(不与原点重合),连接PD,过点P作PFPD交y轴于点F,连接DF(1)如图所示,若抛物线顶点的纵坐标为6,求抛物线的解析式;(2)求A、B两点的坐标;(3)如图所示,小红在探究点P的位置发现:当点P与点E重合时,PDF的大小为定值,进而猜想:对于直线y=x上任意一点P(不与原点重合),PDF的大小为定值请你判断该猜想是否正确,并说明理由【考点】二次函数综合题【分析】(1)先提取公式因式将原式变形为y=m(x2+4x5),然后令y=0可求得函数图象与x轴的交点坐标,从而可求得点A、B的坐标,然后依据抛物线的对称性可得到抛物线的对称轴为x=2,故此可知当x=2时,y=6,于是可求得m的
19、值;(2)由(1)的可知点A、B的坐标;(3)先由一次函数的解析式得到PBF的度数,然后再由PDPF,FOOD,证明点O、D、P、F共圆,最后依据圆周角定理可证明PDF=60【解答】解:(1)y=mx2+4mx5m,y=m(x2+4x5)=m(x+5)(x1)令y=0得:m(x+5)(x1)=0,m0,x=5或x=1A(5,0)、B(1,0)抛物线的对称轴为x=2抛物线的顶点坐标为为6,9m=6m=抛物线的解析式为y=x2x+(2)由(1)可知:A(5,0)、B(1,0)(3)如图所示:OP的解析式为y=x,AOP=30PBF=60PDPF,FOOD,DPF=FOD=90DPF+FOD=180
20、点O、D、P、F共圆PDF=PBFPDF=60七、与阅读理解有关的综合题【题15】(2016长沙第25题)若抛物线L:y=ax2+bx+c(a,b,c是常数,abc0)与直线l都经过y轴上的一点P,且抛物线L与顶点Q在直线l上,则称此直线l与该抛物线L具有“一带一路”关系,此时,直线l叫做抛物线L的“带线”,抛物线L叫做直线l的“路线”. (1) 若直线y=mx+1与抛物线y=x22x+n具有“一带一路”关系,求m,n的值;(2) 若某“路线”L的顶点在反比例函数的图像上,它的“带线” l的解析式为y=2x4,求此“路线”L的解析式; (3) 当常数k满足k2时,求抛物线L: y=ax2+(3
21、k22k+1)x+ k的“带线” l与x轴,y轴所围成的三角形面积的取值范围.参考答案:【题16】(2016丽水第23题)如图1,地面BD上两根等长立柱AB,CD之间悬挂一根近似成抛物线y=x2x+3的绳子(1)求绳子最低点离地面的距离;(2)因实际需要,在离AB为3米的位置处用一根立柱MN撑起绳子(如图2),使左边抛物线F1的最低点距MN为1米,离地面1.8米,求MN的长;(3)将立柱MN的长度提升为3米,通过调整MN的位置,使抛物线F2对应函数的二次项系数始终为,设MN离AB的距离为m,抛物线F2的顶点离地面距离为k,当2k2.5时,求m的取值范围【考点】二次函数的应用【分析】(1)直接利
22、用配方法求出二次函数最值得出答案;(2)利用顶点式求出抛物线F1的解析式,进而得出x=3时,y的值,进而得出MN的长;(3)根据题意得出抛物线F2的解析式,得出k的值,进而得出m的取值范围【解答】解:(1)a=0,抛物线顶点为最低点,y=x2x+3=(x4)2+,绳子最低点离地面的距离为: m;(2)由(1)可知,BD=8,令x=0得y=3,A(0,3),C(8,3),由题意可得:抛物线F1的顶点坐标为:(2,1.8),设F1的解析式为:y=a(x2)2+1.8,将(0,3)代入得:4a+1.8=3,解得:a=0.3,抛物线F1为:y=0.3(x2)2+1.8,当x=3时,y=0.31+1.8
23、=2.1,MN的长度为:2.1m;(3)MN=DC=3,根据抛物线的对称性可知抛物线F2的顶点在ND的垂直平分线上,抛物线F2的顶点坐标为:( m+4,k),抛物线F2的解析式为:y=(xm4)2+k,把C(8,3)代入得:(4m4)2+k=3,解得:k=(4m)2+3,k=(m8)2+3,k是关于m的二次函数,又由已知m8,在对称轴的左侧,k随m的增大而增大,当k=2时,(m8)2+3=2,解得:m1=4,m2=12(不符合题意,舍去),当k=2.5时,(m8)2+3=2.5,解得:m1824,m2=8+2(不符合题意,舍去),m的取值范围是:4m82八、与方程根和关系的关系、函数值大小比较
24、有关的综合题【题17】(2016广州第24题)已知抛物线与x轴相交于不同的两点,(1) 求的取值范围(2) 证明该抛物线一定经过非坐标轴上的一点,并求出点的坐标;(3) 当时,由(2)求出的点和点构成的的面积是否有最值,若有,求出最值及相对应的值;若没有,请说明理由.难易 综合性强考点 根的判别式,韦达定理,最值的求法解析 (1)根据根的判别式求出m的取值范围,注意(2)令,得出,故过定点P(3,4)(3)利用韦达定理写出AB的长度,再根据m的取值范围,求出面积的范围参考答案 (1) 根据已知可知所以 所以所以m的取值范围为且.(2) 令,则,令得,当时,;当时,;所以抛物线过定点(1,0),
25、(3,4),因为(1,0)在x轴上,所以抛物线一定经过非坐标轴上一点P,P的坐标为(3,4)(3) 设A,B的坐标为,则因为,所以,所以2AB因为,所以,所以,所以当时,有最大值,最大值为【题18】(2016株洲第26题)已知二次函数(1)当时,求这个二次函数的顶点坐标;(2)求证:关于的一元次方程有两个不相等的实数根;(3)如图,该二次函数与轴交于A、B两点(A点在B点的左侧),与轴交于C点,P是轴负半轴上一点,且OP=1,直线AP交BC于点Q,求证:专心-专注-专业【解析】第1问将代入二次函数可求得,顶点坐标为(2)运用判别式可得证(3)方法一:点P的坐标为(0,1),A,B,C求出AB=
26、1,OA=,从而求出点Q坐标为运用距离公式求出全部代入可得证这种方法走的路线是传统的函数思想。方法二:从角的关系发现ABQ中AQB=90,从而得APOABQ(AB=1, OA=,)从而求出代入可得。这种方法走的是相似路线。【题19】(2016杭州第22题)已知函数.在同一平面直角坐标系中. (1)若函数的图像过点(-1,0),函数的图像过点(1,2),求a,b的值. (2)若函数的图像经过的顶点.求证:;当时,比较,的大小. 参考答案:【题20】(2016泰州第26题)已知两个二次函数和.对于函数,当x=2时,该函数取最小值.(1) 求b的值; (2) 若函数y1的图像与坐标轴只有2个不同的公共点,求这两个公共点间的距离;(3) 若函数y1、y2的图像都经过点(1,-2),过点(0,a-3)(a为实数)作x轴的平行线,与函数y1、y2的图像共有4个不同的交点,这4个交点的横坐标分别是x1、x2、x3、x4,且x1x2x3x4,求x4-x3+x2-x1的最大值. 参考答案:(1)b= 4(2)25或4(3)当a大于1时,最大值是4