专题:抽象函数的单调性与奇偶性的证明(共7页).doc

上传人:飞****2 文档编号:12179669 上传时间:2022-04-24 格式:DOC 页数:7 大小:516.50KB
返回 下载 相关 举报
专题:抽象函数的单调性与奇偶性的证明(共7页).doc_第1页
第1页 / 共7页
专题:抽象函数的单调性与奇偶性的证明(共7页).doc_第2页
第2页 / 共7页
点击查看更多>>
资源描述

《专题:抽象函数的单调性与奇偶性的证明(共7页).doc》由会员分享,可在线阅读,更多相关《专题:抽象函数的单调性与奇偶性的证明(共7页).doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上抽象函数单调性与奇偶性特殊模型抽象函数正比例函数f(x)=kx (k0)f(x+y)=f(x)+f(y)幂函数 f(x)=xnf(xy)=f(x)f(y) 或指数函数 f(x)=ax (a0且a1)f(x+y)=f(x)f(y) 对数函数 f(x)=logax (a0且a1)f(xy)=f(x)+f(y) 正、余弦函数 f(x)=sinx f(x)=cosxf(x+T)=f(x)正切函数 f(x)=tanx余切函数 f(x)=cotx1.已知,对一切实数、都成立,且,求证为偶函数。证明:令=0, 则已知等式变为在中令=0则2=2 0=1为偶函数。2.奇函数在定义域(-

2、1,1)内递减,求满足的实数的取值范围。解:由得,为函数,又在(-1,1)内递减,3.如果=(a0)对任意的有,比较的大小解:对任意有=2为抛物线=的对称轴又其开口向上(2)最小,(1)=(3)在2,)上,为增函数(3)(4),(2)(1)(4)4. 已知函数f(x)对任意实数x,y,均有f(xy)f(x)f(y),且当x0时,f(x)0,f(1)2,求f(x)在区间2,1上的值域。分析:由题设可知,函数f(x)是的抽象函数,因此求函数f(x)的值域,关键在于研究它的单调性。解:设,当,即,f(x)为增函数。在条件中,令yx,则,再令xy0,则f(0)2 f(0), f(0)0,故f(x)f(

3、x),f(x)为奇函数,f(1)f(1)2,又f(2)2 f(1)4, f(x)的值域为4,2。5. 已知函数f(x)对任意,满足条件f(x)f(y)2 + f(xy),且当x0时,f(x)2,f(3)5,求不等式的解。 分析:由题设条件可猜测:f(x)是yx2的抽象函数,且f(x)为单调增函数,如果这一猜想正确,也就可以脱去不等式中的函数符号,从而可求得不等式的解。 解:设,当,则, 即,f(x)为单调增函数。 , 又f(3)5,f(1)3。, 即,解得不等式的解为1 a 0时,0f(x)0时f(x)0,且f(1)= -2,求f(x)在-3,3上的最大值和最小值.解析:由单调性的定义步骤设x

4、1x2, 则f(x2)=f(x2-x1+x1)=f(x2-x1)+f(x1)0,f(x2-x1)0时,f(x)1,且对于任意实数x、y,有f(x+y)=f(x)f(y), 求证:f(x)在R上为增函数。证明:设R上x11,f(x2)=f(x2-x1+x1)=f(x2-x1)f(x1),(注意此处不能直接得大于f(x1),因为f(x1)的正负还没确定) 。取x=y=0得f(0)=0或f(0)=1;若f(0)=0,令x0,y=0,则f(x)=0与x0时,f(x)1矛盾,所以f(0)=1,x0时,f(x)10,x0,f(-x)1,由,故f(x)0,从而f(x2)f(x1).即f(x)在R上是增函数。

5、17. 已知偶函数f(x)的定义域是x0的一切实数,对定义域内的任意x1,x2都有,且当时,(1)f(x)在(0,+)上是增函数; (2)解不等式解: (1)设,则,即,在上是增函数(2),是偶函数不等式可化为,又函数在上是增函数,0,解得:18.已知函数f(x)的定义域为R,且对m、nR,恒有f(m+n)=f(m)+f(n)1,且f()=0,当x时,f(x)0.求证:f(x)是单调递增函数;证明:设x1x2,则x2x1,由题意f(x2x1)0,f(x2)f(x1)=f(x2x1)+x1f(x1)=f(x2x1)+f(x1)1f(x1)=f(x2x1)1=f(x2x1)+f()1=f(x2x1

6、)0,f(x)是单调递增函数.19.定义在R+上的函数f(x)满足: 对任意实数m,f(xm)=mf(x); f(2)=1.(1)求证:f(xy)=f(x)+f(y)对任意正数x,y都成立; (2)证明f(x)是R+上的单调增函数;(3)若f(x)+f(x-3)2,求x 的取值范围.解:(1)令x=2m,y=2n,其中m,n为实数,则f(xy)=f(2m+n)=(m+n)f(2)=m+n.又f(x)+f(y)=f(2m)+f(2n)=mf(2)+nf(2)=m+n,所以f(xy)=f(x)+f(y)故f(x1)f(x2),即f(x)是R+上的增函数.(3)由f(x)+f(x-3)2及f(x)的

7、性质,得fx(x-3)2f(2)=f(2),解得 3x4.20. 已知函数对任意不等于零的实数都有,试判断函数f(x)的奇偶性。解:取得:,所以又取得:,所以再取则,即因为为非零函数,所以为偶函数。21. 已知函数f(x)的定义域关于原点对称且满足,(2)存在正常数a,使f(a)=1.求证:f(x)是奇函数。 证明:设t=x-y,则,所以f(x)为奇函数。22. 定义在R上的单调函数f(x)满足f(3)=log3且对任意x,yR都有f(x+y)=f(x)+f(y) (1)求证f(x)为奇函数;(2)若f(k3)+f(3-9-2)0对任意xR恒成立,求实数k的取值范围(1)证明:f(x+y)=f

8、(x)+f(y)(x,yR)- 令y=-x,代入式,得 f(x-x)=f(x)+f(-x)=f(0),令x=y=0,代入式,得f(0+0)=f(0)+f(0),即 f(0)=0即f(-x)=-f(x)对任意xR成立,f(x)是奇函数(2)解:f(3)=log30,即f(3)f(0),又f(x)在R上是单调函数,所以f(x)在R上是增函数,又由(1)f(x)是奇函数f(k3)-f(3-9-2)=f(-3+9+2), k3-3+9+2,3-(1+k)3+20对任意xR成立分离系数由k3-3+9+2得要使对不等式恒成立,只需k上述解法是将k分离出来,然后用平均值定理求解23. 已知f(x)是定义在R

9、上的不恒为零的函数,且对于任意的函数a,b都满足f(ab)=af(b)+bf(a). (1)求f(0),f(1)的值; (2)判断f(x)的奇偶性,并证明你的结论;解:(1)、令a=b=0,得f(0)=0,令a=b=1,得f(1)=0. (2)令a=b=-1,得f(-1)(-1)=-f(-1)-f(-1),f(-1)=0,故f(-x)=f(-1)(x)= -f(x)+xf(-1)= -f(x),故f(x)为奇函数.24. 定义域为R的函数f(x)满足:对于任意的实数x,y都有f(x+y)=f(x)+f(y)成立,且当x0时f(x)0恒成立.(1)判断函数f(x)的奇偶性,并证明你的结论;(2)

10、证明f(x)为减函数;解:(1)略(2)设任意x1,x2R且x1x2,则x2-x10,f(x2-x1)0,而f(x2-x1)= f(x2)+ f(-x1)= f(x2)-f(x1)0;f(x1)f(x2),即f(x)在(-,+)上是减函数25. 已知f(x)是定义在1,1上的奇函数,且f(1)=1,若a,b1,1,a+b0时,有0.(1)判断函数f(x)在1,1上是增函数,还是减函数,并证明你的结论;(2)解不等式:f(x+)f();.解:(1)设任意x1,x21,1,且x1x2.由于f(x)是定义在1,1上的奇函数,f(x2)f(x1)=f(x2)+f(x1).因为x10f(x2)+f(x1)0,即f(x2)f(x1),所以函数f(x)在1,1上是增函数.(2)由不等式f(x+)f()得,解得1x0,即为所求.专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁