《2022数字推理题的解题技巧大全.docx》由会员分享,可在线阅读,更多相关《2022数字推理题的解题技巧大全.docx(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022数字推理题的解题技巧大全篇一:2022数字推理题的解题技巧大全剖析(5) 2022数字推理题的解题技巧大全剖析(5) 1、102,96,108,84,132,( ) A.36 B.64 C.70 D.72 2、1,32,81,64,25,(),1 A.5 B.6 C.10 D.12 3、-2,-8,0,64,( ) A.-64 B.128 C.156 D.250 4、2,3,13,175,( ) A.30625 B.30651 C.30759 D.30952 5、3,7,16,107,( ) A.1707 B.1704 C.1086 D.1072 1.A【解析】拿到题一看,数列5项呈现
2、一大一小的波浪型,可知运用交替规律,进一步思考就可得出结果是A. 2.B【解析】数字由小到大再到小,立即考虑使用乘方规律。本题就是乘方规律的变化运用,底数分别是1,2,3,4,5,6,对应的指数分别是6,5,4,3,2,1. 3.D【解析】可以看出给出的数字稍加变化都是一些数的乘方,分析一下可知是自然数1,2,3,4立方的各项,对应乘以另一个数列-2,-1,0,1所得,下一个应该是5的立方乘以2,得出答案是D. 4.B【解析】这道题更加明显,四个选项的数字很大,必用乘方规律。可以看出175的平方是30625,但不适用前面项,又知30651比175的平方大26,恰好是前一项13的2倍。推算可知,
3、前项的2倍加上后项的平方等于第三项,因此,答案就是B. 5.A【解析】同样,这道题的四个选项也比较大,但可以看出这些数和一些数的乘方离得较远。再看能不能用乘法呢?从前两项直接是看不出的,但是我们发现16与107的积和1707相近,相差5,往前推发现,前两项的积减去5就等于后一项,因此答案是A. 篇二:考前必看数字推理题的解题技巧大全技巧归纳 写在前面的话 数字推理是行测中很多人眼里的“难题”,面对题目时有人因为惧怕而格外重视,也有人因为不会做而彻底放弃。我自己同样很怕做数字推理题。想过放弃,也想过题海战术,不过最后发现这两种方法都有不切实际的地方。放弃,显然是不可能的。因为不可能保证其他部分都
4、做对,来补回放弃的这些分数。题海,也不科学。行测、申论,再加上法律加试,这么多类型中,数字推理只是一小部分了。把大部分精力放在小部分题目上,只能是弊大于利了。所以我最终选择的是:掌握最基本的,保证基础题目不丢分。放弃有难度的,保证学习和做题有效率。当然,这种方法只适合我这样对数字没什么感觉的人了,如果你学有余力,完全可以精益求精。 常见且易被忽视的数列: 1、质数列:(质数只有1和其本身两个约数)2,3,5,7,11,13,17,19,23,29,31,37,41,43? 例:6 8 11 16 23 ( ) A. 32 B.34 C.36 D.38 1,1,2,3,4,7,() A、4 B、
5、6 C、10 D、12 选B 两两相加组成质数列 17日更新例题 3,7,22,45,() A、58 B、73 C、94 D、116 选D 22-1 32-2 52-3 72-4 (112-5) 2、合数列:4、6、8、9、10、12、14、15、16、18、20? 这2个数列大家很容易忽视,论坛里好多帖子实际上就是因为忘记这2个数列所以才不会做。请大家注意。 众所周知,行测考试做题时间很关键。要做好行测尤其是数列部分是需要技巧的,这没人不同意吧。但是大家往往忽视了基本功。为什么有些人一看到数列题就很 快得出答案呢?我个人觉得是因为他们对数字的敏感。这里面有天赋的成分,但我相信刻苦训练也是可以
6、锻炼出这种敏感的。所以熟练掌握各种基本数列很重要。就拿指数数列来说吧,要求必须熟记110的平方、立方,2、3、4、5的N次方。只有这样,你才能在看到9时立刻想到9=3平方或9=2立方+1。对这几个数字,必须是熟记。5的立方算谁不会算?可是数列题不是叫你算5的立方是多少的,当4、28、16、126这样的数列放在你面前时,忽增忽减看似毫无规律,你还会想到这里有5的立方吗?所以必须熟记。熟到不能再熟。 以下是我看过论坛上的一些题目之后,把大家最爱问的、经常不会做的题目整理在一起,总结的数列常见方法。 分组法 相邻项为一组,各组规律相同。或差为常数、或和为常数。 4,3,1,12,9,3,17,5(A
7、) A12 B13 C14 D15 4.5,3.5,2.8,5.2,4.4,3.6,5.7,( A) A2.3 B3.3 C4.3 D5.3 拆分相加(乘)法 把一个多位数每个位上的数字分别相加或相乘(目前还没见过相减相除的)得到一个新数,再看规律。这类题变型比较多,为方便大家自己总结,所以我写出例题的解答过程。 8757 36 19 ( ) 1 A. 17 B.15 C.12D.10 选D 87157 57136 36119 19110 0111 256 ,269 ,286 ,302 ,() A.254 B.307 C.294 D.316 选B 2+5+6=13 256+13=269 2+6
8、+9=17 269+17=286 2+8+6=16 286+16=302 ?=302+3+2=307 隔项法 奇数项和偶数项分别组成新的数列 0,12,24,14,120,16,( ) A:280 B:32 C:64 D:336 选D 奇数项为0,24,120,? 0=13-1 24=33-3 120=53-5 ?=73-7 三项相加法 这种题其实比较简单,但大家也容易疏忽。三项相加后得到一个新数列,再看规律 2,3,4,9,12,15,22,() 答案:27 2+3+4=9 3+4+9=16 4+9+12=25 ? C=A平方-B及其变型 3,5,4,21,(A),446 A5 B25C30
9、 D 143 变型1:可以是A平方加减一个常数(或有规律的变数) 3,5,16,(240) 变型2:A立方加减常数(或有规律的变数) -1,0,1,2,9,(730) 关于平方、立方还有很多类型,比如自然数列的平方加减常数(或规律变数)、常数的N次方加减常数(或规律变数)?其实都差不多。只要掌握我前面所说的“熟练记忆”,再加上一定练习相信是可以过关的了。 16日23:23更新 下面这道题用的方法,我今天第一次见。提供者,“江歌歌”。大家先看看 0,3,17,95,() 答案:599 1平方-1 1*2平方-1 1*2*3平方-1 2*3*4平方-1 2*3*4*5平方-1 17日 12:03更
10、新 很巧妙数字大小写之间的转换,就当作是轻松一下吧,看过之后会觉得数字推理原来也可以这么有意思 1,10,3,5,() A、11 B、9 C、12 D、4 选D 题目变为:一、十、三、五?分别是1划、2划、3划、4划 分解相乘 把原数分解成2个数字的积,分解之后,变成2个新数列,再看它们之间的规律 2,12,36,80,() 答案:150 2*1 3*4 4*9 5*16 6,15,40,96,() A、216 B、204 C、196 D、176 选B 2*3=6 3*5=15 5*8=40 8*12=96 12*17=204 2,3,5,8,12,17 相差1,2,3,4,5, 补充: 一、
11、有分数的数列,通常的方法是将各数都转化为分数。 0,1/2,8/11,5/6,8/9,() A、31/34 B、33/36 C、35/38 D、37/40 选C 0 = 0/3 1/2= 3/6 8/11 = 8/11 5/6 = 15/18 8/9 = 24/27 分母、分子相差为3 各分母、各分子间差为3、5、7、9 二、基本规律 1,一大一小交替出现,首先考虑隔项数列; 2,由小到大再到小,必与指数有关; 3,注意观察是否平方/立方的变形(或者不同数的平方/立方相加/相减等);要求对以上前提篇的熟练运用 4,跳跃较大则考虑乘积/次方,跳跃较小则考虑差/二重差; 5,尝试把各数间差,及二重
12、差列出,寻找规律; 6,尝试把各数变化成某平方式,看是否存在规律; 数算部分 以下都是最基础的,原本以为不用写上来。可是今天看到还是有人不会。所以加上。 一、立方和公式: a立方+b立方=(a+b)(a平方-ab+b平方) a立方-b立方=(a-b)(a平方+ab+b平方) 二、特殊数列前N项和 1+2+3+4+5+6?+n=n(n+1)/2 2+4+6+8+10+?+2n=n(n+1) 1+3+5+7+?+(2n-1)=n平方 1平方+2平方+3平方+4平方+?+n平方=n(n+1)(2n+1)/6 1立方+2立方+3立方+4立方+?+n立方=n2(n+1)2/4 三、等差数列求和公式: (
13、1)Sn=n(a1+an)/2 (2) Sn=na1+n(n-1)d/2 例:某剧院有25排座位,后一排比前一排多2个座位,最后一排有70个座位.这个剧院一共有多少座位? A.1104 B.1150C.1170D.1280 流水行船问题 基本公式:顺水速度=船速+水速 逆水速度=船速-水速 上面2个公式的变式:船速=(顺水速度+逆水速度)/2水速=(顺-逆)/2 特别要分清楚的是,顺水速度、逆水速度、船速、水速这四个概念。 38、一只船顺流而行的航速为30千米/小时,已知顺水航行3小时和逆水航行5小时的航程相等,则此船顺水漂流1小时的航程为: A3千米 B4千米 C5千米 D6千米 该例题中,
14、有航速、顺水航行、逆水航行、顺水漂流几个概念,如果搞不清楚,就没办法应用公式了。 航速,其实就是顺水或逆水航行的速度,题目中的30千米/小时,即为顺水速度。 顺水漂流,也就是船本身不运动,随波逐流。所以顺水漂流的速度就是水速 题虽然不难,但是我感觉出的很好。很能检验这部分的知识学的是否到位。 解答:设船速为a,水速为b a+b=30 30*3=5*(a-b) 得a=24 b=6 顺水漂流时的速度即为水速,所以1小时航程为6千米 “牛吃草”问题 这类问题的特点是:草的总量均匀变化。解答这类问题,困难就在于草的总量在变,它每天都在均匀地生长,时间愈长,草的总量越多.草的总量是由两部分组成的:草场上
15、原有的草量;草场每天(周)生长而新增的草量.因此,必须设法找出这两个量来。抓住这个特点,其实问题就能迎刃而解了。 举个例子: 牧场上一片青草,每天牧草都匀速生长。这片牧草可供10头牛吃20天,或者可供15头牛吃10天。问:可供25头牛吃几天? 设1头牛1天吃1份草。则有: 10头牛20天吃的草量=200=原有草量+20天的新增草量 15头牛10天吃的草量=150=原有草量+10天新增草量 这样就很清楚了,10天的新增草量=200-150=50 那么草场每天新增5份草。 再来算草场原有的草量就很简单了。200-20*5=101或者150-10*5=101 只要抓住这两个始终不变的量以及它们和题目
16、已知条件间的关系,不管题目怎么变化,我们都可以轻松应对。 比如:牧场上有一片青草,草每天以均匀的速度生长,这些草供给20头牛吃,可以吃20天,供给101头羊吃,可以吃12天。如果每头牛每天的吃草量相当于 篇三:数字推理题解题技巧大全-第3部分 数字推理题的各种规律 第三部分: 数字推理题的各种规律 一.题型: 等差数列及其变式 【例题1】2,5,8,() A 10 B 11 C 12 D 13 【解答】从上题的前3差等于一个常数。题中第二个数字为5,第一个数字为2,两者的差为3个数字也满足此规律,那么在此基础上对未知的一项进行推理,即11,即答案为B。 【例题2】3,4,6,9,(),18 A
17、 11 B 12 C 13 D 14 【解答】答案为C1,3,4,5,?。显然,括号内的数字应填13 等比数列及其变式 【例题3】3,9,27,81() A 243 B 342 C 433 D 135 A一个常数。该题中后项与前项相除得数均为3,故括号内的数字应填243。 【例题4】1260,() ;1,1.5,2,2.5,3,因此括号内的数字应为603=180。这种规律对于没有类似实践经验的应试者往往很难想到。我们在这里作为例题专门加以强调。该题是1997年中央国家机关录用大学毕业生考试的原题。 【例题5】8,14,26,50,() A 76 B 98 C 101 D 104 【解答】答案为
18、B。这也是一道等比数列的变式,前后两项不是直接的比例关系,而是中间绕了一个弯,前一项的2倍减2之后得到后一项。故括号内的数字应为502-2=98。 等差与等比混合式 【例题6】5,4,10,8,15,16,(),() A 20,18 B 18,32 C 20,32 D 18,32 【解答】此题是一道典型的等差、等比数列的混合题。其中奇数项是以5数列,偶数项是以4为首项、等比为2的灵活度高,可以随意地拆加或重新组合, 求和相加式与求差相减式 【例题7】34,35,69,104,() A 138 B 139 C 173 D 179 【解答】答案为C34+35=69,得到了验证,说明假设的规是数字排
19、列的又一重要规律。 【例题8】5,3,2,1,1,() A -3 B -2 C 0 D 2 一项5与第二项3之差就是未知项,即1-1=0C。 求积相乘式与求商相除式 【例题9】10() 10等于第一、第二项之积,第四D。 【例题10】101,50,2,25,() A 1 B 3 C 2/25 D 2/5 【解答】这个数列则是相除形式的数列,即后一项是前两项之比,所以未知项应该是2/25,即选C。 求平方数及其变式 【例题11】1,4,9,(),25,36 A 10 B 14 C 20 D 16 【解答】答案为D。这是一道比较简单的试题,直觉力强的考生马上就可以作出这样的反应,第一个数字是1的平
20、方,第二个数字是2的平方,第三个数字是35、6的平方,所以第四个数字必定是4字的平方得数是很有必要的。 【例题12】66,83,102,123,() A 144 B 145 C 146 D 147 【解答】答案为C。这是一道平方型数列的变式,其规律是8,9,102,故括号内的数字应为12的平方再加2,得146 求立方数及其变式 【例题13】1,8,27,() A 36 B 64 C 72 D81 【解答】答案为B。各项分别是23,464。 【例题14】0,6,24,60,120,A 186 B 210 C 220 D 226 B解决了一半,至少找到了解决问题的突破口,这道题的规律是:第一个数是
21、1的立方减1,第二个数是223的立方减3,第四个数是4的立方减4,依此类推,空格处应为6的立方减6210 【例题15,259,173,261,168,263,() A 275 B 279 C 164 D 163 【解答】答案为D。通过考察数字排列的特征,我们会发现,第一个数较大,第二个数较小,第三个数较大,第四个数较小,?。也就是说,奇数项的都是大数,而偶数项的都是小数。可以判断,这是两项数列交替排列在一起而形成的一种排列方式。在这类题目中,规律不能在邻项之间寻找,而必须在隔项中寻找。我们可以看到,奇数项是257,259,261,263,是一种等差数列的排列方式。而偶数项是178,173,16
22、8,(),也是一个等差数列,所以括号中的数应为168-5=163。顺便说一下, 该题中的两个数列都是以等差数列的规律排列,但也有一些题目中两个数列是按不同规律排列的,不过题目的实质没有变化。 两个数列交替排列在一列数字中,也是数字推理测验中一种较常见的形式。只有当你把这一列数字判断为多组数列交替排列在一起时,才算找到了正确解答这道题的方向,你的成功就已经80%了。 简单有理化式 二、解题技巧 数字推理题的解题方法 有帮助。 1?而解; 2? 3?空缺项在最后的,从前往后推导规律;空缺项在中间的可以两边同时推导。 4? (1)或偶数); (2) (3); 如:2 4 8 16 32 64() 2
23、)的等比数列,空缺项应为128。 (4); 如:相邻数之间的比是一个等差数列,依次为:0.5、1、1.5、2、2.5。 (5)二级等比数列:相邻数之间的差或比构成一个等比数理; 如:0 1 3 7 15 31() 相邻数之间的差是一个等比数列,依次为1、2、4、8、16,空缺项应为63。 (6)加法规律:前两个数之和等于第三个数,如例题23; (7)减法规律:前两个数之差等于第三个数; 如:5 3 2 1 1 0 1() 相邻数之差等于第三个数,空缺项应为-1。 (8)乘法(除法)规律:前两个数之乘积(或相除)等于第三个数; (9)完全平方数:数列中蕴含着一个完全平方数序列,或明显、或隐含;
24、如:2 3 10 15 26 35() 1*1+1=2, 2*2-1=3,3*3+1=10,4*4-1=15.空缺项应为50。 (10)混合型规律:由以上基本规律组合而 如:1 2 6 15 31() 14、1631+25=56。 4道最BT 1、15,18,54,(),210 A 106 B 107 C 123 D 112 2、1988的1989次方+1989? 3、4、5、16,718,( ) A 10110, B 11112,C 11102, D 10111 6、3/2,9/4,25/8,( ) A 65/16, B 41/8, C 49/16, D 57/8 本文来源:网络收集与整理,如有侵权,请联系作者删除,谢谢!第22页 共22页第 22 页 共 22 页第 22 页 共 22 页第 22 页 共 22 页第 22 页 共 22 页第 22 页 共 22 页第 22 页 共 22 页第 22 页 共 22 页第 22 页 共 22 页第 22 页 共 22 页第 22 页 共 22 页