2022年高二数学必修二教案设计:函数的概念.docx

上传人:l*** 文档编号:11670785 上传时间:2022-04-21 格式:DOCX 页数:9 大小:19.98KB
返回 下载 相关 举报
2022年高二数学必修二教案设计:函数的概念.docx_第1页
第1页 / 共9页
2022年高二数学必修二教案设计:函数的概念.docx_第2页
第2页 / 共9页
点击查看更多>>
资源描述

《2022年高二数学必修二教案设计:函数的概念.docx》由会员分享,可在线阅读,更多相关《2022年高二数学必修二教案设计:函数的概念.docx(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2022年高二数学必修二教案设计:函数的概念正确的道路是这样,吸取你的前辈所做的一切,然后再往前走。下面是我为您举荐高二数学必修二教案设计:函数的概念。一、教学目标:使学生理解函数的概念,明确确定函数的三个要素,学会求某些函数的定义域,驾驭判定两个函数是否相同的方法;使学生理解静与动的辩证关系.教学重点:函数的概念,函数定义域的求法.教学难点:函数概念的理解.二、教学过程:.课题导入师在初中,我们已经学习了函数的概念,请同学们回忆一下,它是怎样表述的?(几位学生试着表述,之后,老师将学生的回答梳理,再表述或者启示学生将表述补充完整再条理表述).设在一个改变的过程中有两个变量x和y,假如对于x的

2、每一个值,y都有惟一的值与它对应,那么就说y是x的函数,x叫做自变量.师我们学习了函数的概念,并且详细探讨了正比例函数,反比例函数,一次函数,二次函数,请同学们思索下面两个问题:问题一:y=1(x∈R)是函数吗?问题二:y=x与y=x2x 是同一个函数吗?(学生思索,很难回答)师明显,仅用上述函数概念很难回答这些问题,因此,须要从新的高度来相识函数概念(板书课题).讲授新课师下面我们先看两个非空集合A、B的元素之间的一些对应关系的例子.在(1)中,对应关系是乘2,即对于集合A中的每一个数n,集合B中都有一个数2n和它对应.在(2)中,对应关系是求平方,即对于集合A中的每一个数m,集合

3、B中都有一个平方数m2和它对应.在(3)中,对应关系是求倒数,即对于集合A中的每一个数x,集合B中都有一个数 1x 和它对应.请同学们视察3个对应,它们分别是怎样形式的对应呢?生一对一、二对一、一对一.师这3个对应的共同特点是什么呢?生甲对于集合A中的随意一个数,根据某种对应关系,集合B中都有惟一的数和它对应.师生甲回答的很好,不但找到了3个对应的共同特点,还特殊强调了对应关系,事实上,一个集合中的数与另一集合中的数的对应是根据肯定的关系对应的,这是不能忽视的. 事实上,函数就是从自变量x的集合到函数值y的集合的一种对应关系.现在我们把函数的概念进一步叙述如下:(板书)设A、B是非空的数集,假

4、如根据某个确定的对应关系f,使对于集合A中的随意一个数x,在集合B中都有惟一确定的数f(x)和它对应,那么就称fA→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A其中x叫自变量,x的取值范围A叫做函数的定义域,与x的值相对应的y(或f(x)值叫做函数值,函数值的集合y|y=f(x),x∈A叫函数的值域.一次函数f(x)=ax+b(a≠0)的定义域是R,值域也是R.对于R中的随意一个数x,在R中都有一个数f(x)=ax+b(a≠0)和它对应.反比例函数f(x)=kx (k≠0)的定义域是A=x|x≠0,值域是B=f(x)|f(x)

5、≠0,对于A中的随意一个实数x,在B中都有一个实数f(x)= kx (k≠0)和它对应.二次函数f(x)=ax2+bx+c(a≠0)的定义域是R,值域是当a>0时B=f(x)|f(x)≥4ac-b24a ;当a<0时,B=f(x)|f(x)≤4ac-b24a ,它使得R中的随意一个数x与B中的数f(x)=ax2+bx+c(a≠0)对应.函数概念用集合、对应的语言叙述后,我们就很简单回答前面所提出的两个问题.y=1(x∈R)是函数,因为对于实数集R中的任何一个数x,根据对应关系函数值是1,在R中y都有惟一确定的值1与它对应,所以说y是x的

6、函数.Y=x与y=x2x 不是同一个函数,因为尽管它们的对应关系一样,但y=x的定义域是R,而y=x2x 的定义域是x|x≠0. 所以y=x与y=x2x 不是同一个函数.师理解函数的定义,我们应当留意些什么呢?(老师提出问题,启发、引导学生思索、探讨,并和学生一起归纳、总结)留意:函数是非空数集到非空数集上的一种对应.符号f:A→B表示A到B的一个函数,它有三个要素;定义域、值域、对应关系,三者缺一不行.集合A中数的随意性,集合B中数的惟一性.f表示对应关系,在不同的函数中,f的详细含义不一样.f(x)是一个符号,肯定不能理解为f与x的乘积.师在探讨函数时,除用符号f(x)表示

7、函数外,还常用g(x) 、F(x)、G(x)等符号来表示.例题分析例1求下列函数的定义域.(1)f(x)=1x-2 (2)f(x)=3x+2 (3)f(x)=x+1 +12-x分析:函数的定义域通常由问题的实际背景确定.假如只给出解析式y=f(x),而没有指明它的定义域.那么函数的定义域就是指能使这个式子有意义的实数x的集合.解:(1)x-2≠0,即x≠2时,1x-2 有意义∴这个函数的定义域是x|x≠2(2)3x+2≥0,即x≥-23 时3x+2 有意义∴函数y=3x+2 的定义域是-23 ,+∞)(3) x+1≥0

8、2-x≠0 x≥-1x≠2∴这个函数的定义域是x|x≥-1∩x|x≠2=-1,2)∪(2,+∞).留意:函数的定义域可用三种方法表示:不等式、集合、区间.从上例可以看出,当确定用解析式y=f(x)表示的函数的定义域时,常有以下几种状况:(1)假如f(x)是整式,那么函数的定义域是实数集R;(2)假如f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合;(3)假如f(x)是偶次根式,那么函数的定义域是使根号内的式子不小于零的实数的集合;(4)假如f(x)是由几个部分的数学式子构成的,那么函数的定义域是使各部分式子都有

9、意义的实数的集合(即使每个部分有意义的实数的集合的交集);(5)假如f(x)是由实际问题列出的,那么函数的定义域是使解析式本身有意义且符合实际意义的实数的集合.例如:一矩形的宽为x m,长是宽的2倍,其面积为y=2x2,此函数定义域为x>0而不是全体实数.由以上分析可知:函数的定义域由数学式子本身的意义和问题的实际意义确定.师自变量x在定义域中任取一个确定的值a时,对应的函数值用符号f(a)来表示.例如,函数f(x)=x2+3x+1,当x=2时的函数值是f(2)=22+3•2+1=11留意:f(a)是常量,f(x)是变量 ,f(a)是函数f(x)中当自变量x=a时的函数值.下面

10、我们来看求函数式的值应当怎样进行呢?生甲求函数式的值,严格地说是求函数式中自变量x为某一确定的值时函数式的值,因此,求函数式的值,只要把函数式中的x换为相应确定的数(或字母,或式子)进行计算即可.师回答正确,不过要精确地求出函数式的值,计算时万万不行马虎大意噢!生乙判定两个函数是否相同,就看其定义域或对应关系是否完全一样,完全一样时,这两个函数就相同;不完全一样时,这两个函数就不同.师生乙的回答完整吗?生完整!(课本上就是如生乙所述那样写的).师大家说,判定两个函数是否相同的依据是什么?生函数的定义.师函数的定义有三个要素:定义域、值域、对应关系,我们判定两个函数是否相同为什么只看两个要素:定

11、义域和对应关系,而不看值域呢?(学生窃窃私语:是啊,函数的三个要素不是缺一不行吗?怎不看值域呢?)(无人回答)师同学们预习时还是欠细致,欠思索!我们做事情,看问题都要多问几个为什么!函数的值域是由什么确定的,不就是由函数的定义域与对应关系确定的吗!关注了函数的定义域与对应关系,三者就全看了!(生茅塞顿开,我们怎么就没想到呢?)例2求下列函数的值域(1)y=1-2x (x∈R) (2)y=|x|-1 x∈-2,-1,0,1,2(3)y=x2+4x+3 (-3≤x≤1)分析:求函数的值域应确定相应的定义域后再依据函数的详细形式及运算确定其值域.对于(1)(2)可用干

12、脆法依据它们的定义域及对应法则得到(1)(2)的值域.对于(3)可借助数形结合思想利用它们的图象得到值域,即图象法.解:(1)y∈R(2)y∈1,0,-1(3)画出y=x2+4x+3(-3≤x≤1)的图象,如图所示,当x∈-3,1时,得y∈-1,8.课堂练习课本P24练习17.课时小结本节课我们学习了函数的定义(包括定义域、值域的概念)、区间的概念及求函数定义域的方法.学习函数定义应留意的问题及求定义域时的各种情形应当予以重视.(本小结的内容可由学生自己来归纳).课后作业课本P28,习题1、2.第9页 共9页第 9 页 共 9 页第 9 页 共 9 页第 9 页 共 9 页第 9 页 共 9 页第 9 页 共 9 页第 9 页 共 9 页第 9 页 共 9 页第 9 页 共 9 页第 9 页 共 9 页第 9 页 共 9 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁