《2022年高二数学教案设计:《导数的几何意义》.docx》由会员分享,可在线阅读,更多相关《2022年高二数学教案设计:《导数的几何意义》.docx(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022年高二数学教案设计:导数的几何意义正确的道路是这样,吸取你的前辈所做的一切,然后再往前走。下面是我为您举荐高二数学教案设计:导数的几何意义。一、教学目标学问与技能目标:本节的中心任务是探讨导数的几何意义及其应用,概念的形成分为三个层次:(1) 通过复习旧知求导数的两个步骤以及平均改变率与割线斜率的关系,解决了平均改变率的几何意义后,明确探究导数的几何意义可以依据导数概念的形成寻求解决问题的途径。(2) 从圆中割线和切线的改变联系,推广到一般曲线中用割线靠近的方法直观定义切线。(3) 依据割线与切线的改变联系,数形结合探究函数导数的几何意义教案在导数的几何意义教案处的导数导数的几何意义教
2、案的几何意义,使学生相识到导数导数的几何意义教案就是函数导数的几何意义教案的图象在导数的几何意义教案处的切线的斜率。即:导数的几何意义教案=曲线在导数的几何意义教案处切线的斜率k在此基础上,通过例题和练习使学生学会利用导数的几何意义说明实际生活问题,加深对导数内涵的理解。在学习过程中感受靠近的思想方法,了解以直代曲的数学思想方法。过程与方法目标:(1) 学生通过视察感知、动手探究,培育学生的动手和感知发觉的实力。(2) 学生通过对圆的切线和割线联系的相识,再类比探究一般曲线的状况,完善对切线的认知,感受靠近的思想,体会相切是种局部性质的本质,有助于数学思维实力的提高。(3) 结合分层的探究问题
3、和分层练习,期望各种层次的学生都可以凭借自己的实力尽力走在老师的前面,独立解决问题和发觉新知、应用新知。情感、看法、价值观:(1) 通过在探究过程中渗透靠近和以直代曲思想,使学生了解近似与精确间的辨证关系;通过有限来相识无限,体验数学中转化思想的意义和价值;(2) 在教学中向他们供应充分的从事数学活动的机会,如:探究活动,让学生自主探究新知,例题则采纳练在讲之前,讲在关键处。在活动中激发学生的学习潜能,促进他们真正理解和驾驭基本的数学学问技能、数学思想方法,获得广泛的数学活动阅历,提高综合实力,学会学习,进一步在意志力、自信念、理性精神等情感与看法方面得到良好的发展。教学重点与难点重点:理解和
4、驾驭切线的新定义、导数的几何意义及应用于解决实际问题,体会数形结合、以直代曲的思想方法。难点:发觉、理解及应用导数的几何意义。二、教学过程一、复习提问1.导数的定义是什么?求导数的三个步骤是什么?求函数y=x2在x=2处的导数.定义:函数在导数的几何意义教案处的导数导数的几何意义教案就是函数在该点处的瞬时改变率。求导数的步骤:第一步:求平均改变率导数的几何意义教案;其次步:求瞬时改变率导数的几何意义教案.(即导数的几何意义教案,平均改变率趋近于的确定常数就是该点导数)2.视察函数导数的几何意义教案的图象,平均改变率导数的几何意义教案 在图形中表示什么?生:平均改变率表示的是割线PQ的斜率.导数
5、的几何意义教案师:这就是平均改变率(导数的几何意义教案)的几何意义,3.瞬时改变率(导数的几何意义教案)在图中又表示什么呢?如图2-1,设曲线C是函数y=f(x)的图象,点P(x0,y0)是曲线C上一点.点Q(x0+Δx,y0+Δy)是曲线C上与点P邻近的任一点,作割线PQ,当点Q沿着曲线C无限地趋近于点P,割线PQ便无限地趋近于某一极限位置PT,我们就把极限位置上的直线PT,叫做曲线C在点P处的切线.导数的几何意义教案追问:怎样确定曲线C在点P的切线呢?因为P是给定的,依据平面解析几何中直线的点斜式方程的学问,只要求出切线的斜率就够了.设割线PQ的倾斜角为导数的几何意
6、义教案,切线PT的倾斜角为导数的几何意义教案,易知割线PQ的斜率为导数的几何意义教案。既然割线PQ的极限位置上的直线PT是切线,所以割线PQ斜率的极限就是切线PT的斜率导数的几何意义教案,即导数的几何意义教案。由导数的定义知导数的几何意义教案 导数的几何意义教案。导数的几何意义教案由上式可知:曲线f(x)在点(x0,f(x0)处的切线的斜率就是y=f(x)在点x0处的导数f'(x0).今日我们就来探究导数的几何意义。C类学生回答第1题,A,B类学生回答第2题在学生回答基础上老师重点讲评第3题,然后逐步引入导数的几何意义.二、新课1、导数的几何意义:函数y=f(x)在点x0处的导数f
7、39;(x0)的几何意义,就是曲线y=f(x)在点(x0,f(x0)处切线的斜率.即:导数的几何意义教案口答练习:(1)假如函数y=f(x)在已知点x0处的导数分别为下列状况f'(x0)=1,f'(x0)=1,f'(x0)=-1,f'(x0)=2.试求函数图像在对应点的切线的倾斜角,并说明切线各有什么特征。(C层学生做)(2)已知函数y=f(x)的图象(如图2-2),分别为以下三种状况的直线,通过视察确定函数在各点的导数.(A、B层学生做)导数的几何意义教案2、如何用导数探讨函数的增减?小结:旁边:瞬时,增减:改变率,即探讨函数在该点处的瞬时改变率,也就是导数。
8、导数的正负即对应函数的增减。作出该点处的切线,可由切线的升降趋势,得切线斜率的正负即导数的正负,就可以推断函数的增减性,体会导数是探讨函数增减、改变快慢的有效工具。同时,结合以直代曲的思想,在某点旁边的切线的改变状况与曲线的改变状况一样,也可以推断函数的增减性。都反应了导数是探讨函数增减、改变快慢的有效工具。例1 函数导数的几何意义教案上有一点导数的几何意义教案,求该点处的导数导数的几何意义教案,并由此说明函数的增减状况。导数的几何意义教案函数在定义域上随意点处的瞬时改变率都是3,函数在定义域内单调递增。(此时随意点处的切线就是直线本身,斜率就是改变率)3、利用导数求曲线y=f(x)在点(x0
9、,f(x0)处的切线方程.例2 求曲线y=x2在点M(2,4)处的切线方程.解:导数的几何意义教案∴y'|x=2=2×2=4.∴点M(2,4)处的切线方程为y-4=4(x-2),即4x-y-4=0.由上例可归纳出求切线方程的两个步骤:(1)先求出函数y=f(x)在点x0处的导数f'(x0).(2)依据直线方程的点斜式,得切线方程为 y-y0=f'(x0)(x-x0).提问:若在点(x0,f(x0)处切线PT的倾斜角为导数的几何意义教案导数的几何意义教案,求切线方程。(因为这时切线平行于y轴,而导数不存在,不能用上面方法求切线方程。
10、依据切线定义可干脆得切线方程导数的几何意义教案)(先由C类学生来回答,再由A,B补充.)例3已知曲线导数的几何意义教案上一点导数的几何意义教案,求:(1)过P点的切线的斜率;(2)过P点的切线的方程。解:(1)导数的几何意义教案,导数的几何意义教案y'|x=2=22=4.∴ 在点P处的切线的斜率等于4.(2)在点P处的切线方程为导数的几何意义教案 即 12x-3y-16=0.练习:求抛物线y=x2+2在点M(2,6)处的切线方程.(答案:y'=2x,y'|x=2=4切线方程为4x-y-2=0).B类学生做题,A类学生纠错。三、小结1.导数的几何意义.(C组
11、学生回答)2.利用导数求曲线y=f(x)在点(x0,f(x0)处的切线方程的步骤.(B组学生回答)四、布置作业1. 求抛物线导数的几何意义教案在点(1,1)处的切线方程。2.求抛物线y=4x-x2在点A(4,0)和点B(2,4)处的切线的斜率,切线的方程.3. 求曲线y=2x-x3在点(-1,-1)处的切线的倾斜角*4.已知抛物线y=x2-4及直线y=x+2,求:(1)直线与抛物线交点的坐标; (2)抛物线在交点处的切线方程;(C组学生完成1,2题;B组学生完成1,2,3题;A组学生完成2,3,4题)教学反思:本节内容是在学习了改变率问题、导数的概念等学问的基础上,探讨导数的几何意义,由于新教
12、材未设计极限,于是我尽量采纳形象直观的方式,让学生通过动手作图,自我感受整个靠近的过程,让学生更加深刻地体会导数的几何意义及以直代曲的思想。本节课主要围围着利用函数图象直观理解导数的几何意义和利用导数 的几何意义说明实际问题两个教学重心绽开。 先回忆导数的实际意义、数值意义,由数到形,自然引出从图形的角度探讨导数的几何意义;然后,类比平均改变率瞬时改变率的探讨思路,运用靠近的思想定义了曲线上某点的切线,再引导学生从数形结合的角度思索,获得导数的几何意义导数是曲线上某点处切线的斜率。完成本节课第一阶段的内容学习后,老师点明,利用导数的几何意义,在探讨实际问题时,某点旁边的曲线可以用过此点的切线近
13、似代替,即以直代曲,从而达到以简洁的对象刻画困难对象的目的,并通过两个例题的探讨,让学生从不同的角度完整地体验导数与切线斜率的关系,并感受导数应用的广泛性。 本节课注意以学生为主体,每一个学问、每一个发觉,总设法由学生自己得出,课堂上赐予学生足够的思索时间和空间,让学生在动手操作、动笔演算等活动后,再组织探讨,本老师只是在关键处加以引导。从学生的作业看来,效果较好。第9页 共9页第 9 页 共 9 页第 9 页 共 9 页第 9 页 共 9 页第 9 页 共 9 页第 9 页 共 9 页第 9 页 共 9 页第 9 页 共 9 页第 9 页 共 9 页第 9 页 共 9 页第 9 页 共 9 页