怎么证明平行四边形.doc

上传人:阳*** 文档编号:11549725 上传时间:2022-04-20 格式:DOC 页数:13 大小:24KB
返回 下载 相关 举报
怎么证明平行四边形.doc_第1页
第1页 / 共13页
怎么证明平行四边形.doc_第2页
第2页 / 共13页
点击查看更多>>
资源描述

《怎么证明平行四边形.doc》由会员分享,可在线阅读,更多相关《怎么证明平行四边形.doc(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、怎么证明平行四边形第一篇:怎么证明平行四边形怎么证明平行四边形在平行四边形abcd中,ae,cf,分别是dab、bcd的平分线,e、f点分别在dc、ab上,求证:四边形afce是平行四边形证明:四边形abcd为平行四边形;dcab;eaf=deaae,cf,分别是dab、bcd的平分线;dae=eaf;ecf=bcf;eaf=cfb;aecf;ecaf四边形afce是平行四边形1两组对边分别平行的四边形是平行四边形(定义)2两组对边分别相等的四边形是平行四边形3一组对边平行且相等的四边形是平行四边形4对角线互相平分的四边形是平行四边形5两组对角分别相等的四边形是平行四边形1、两组对边分别平行的

2、四边形是平行四边形2、一组对边平行且相等的四边形是平行四边形3、两组对边分别相等的四边形是平行四边形4、对角线互相平分的四边形是平行四边形21.画个圆,里面画个矩形2.假设圆里面的是平行四边形3.因为对边平行,所以4个角相等4.平行四边四个角之和等于360,5.360除以4等于906.所以圆内平行四边形为矩形.3判定(前提:在同一平面内)(1)两组对边分别相等的四边形是平行四边形;(2)一组对边平行且相等的四边形是平行四边形;(3)两组对边分别平行的四边形是平行四边形;(4)两条对角线互相平分的四边形是平行四边形(5)两组对角分别相等的四边形为平行四边形(注:仅以上五条为平行四边形的判定定理,

3、并非所有真命题都为判定定理,希望各位读者不要随意更改。)(第五条对,如果对角相等,那么邻角之和的二倍等于360,那么邻角之和等与180,那么对边平行,(两组对边分别平行的四边形是平行四边形)所以这个四边形是平行四边形)编辑本段性质(矩形、菱形、正方形都是特殊的平行四边形。)(1)平行四边形对边平行且相等。(2)平行四边形两条对角线互相平分。(3)平行四边形的对角相等,两邻角互补。(4)连接任意四边形各边的中点所得图形是平行四边形。(推论)(5)平行四边形的面积等于底和高的积。(可视为矩形)(6)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。(7)对称中心是两对角线的交点。1两

4、组对边分别平行的四边形是平行四边形(定义)2两组对边分别相等的四边形是平行四边形3一组对边平行且相等的四边形是平行四边形4对角线互相平分的四边形是平行四边形5两组对角分别相等的四边形是平行四边形第二篇:证明平行四边形证明平行四边形如图,分别以rtabc的直角边ac及斜边ab向外作等边acd、等边abe。已知bac=30 ,efab,垂足为f,连结df。求证:四边形adfe是平行四边形。设bc=a,则依题意可得:ab=2a,ac=3a,等边abe,efab= af=1/2ab=a,ae=2a,ef=3adaf=dac+cab=60+30=90,ad=ac=3a,df=(ad +af )=2aae

5、=df=2a,ef=ad=3a= 四边形adfe是平行四边形1两组对边分别平行的四边形是平行四边形(定义)2两组对边分别相等的四边形是平行四边形3一组对边平行且相等的四边形是平行四边形4对角线互相平分的四边形是平行四边形5两组对角分别相等的四边形是平行四边形1、两组对边分别平行的四边形是平行四边形2、一组对边平行且相等的四边形是平行四边形3、两组对边分别相等的四边形是平行四边形4、对角线互相平分的四边形是平行四边形21.画个圆,里面画个矩形2.假设圆里面的是平行四边形3.因为对边平行,所以4个角相等4.平行四边四个角之和等于360,5.360除以4等于906.所以圆内平行四边形为矩形.3判定(

6、前提:在同一平面内)(1)两组对边分别相等的四边形是平行四边形;(2)一组对边平行且相等的四边形是平行四边形;(3)两组对边分别平行的四边形是平行四边形;(4)两条对角线互相平分的四边形是平行四边形(5)两组对角分别相等的四边形为平行四边形(注:仅以上五条为平行四边形的判定定理,并非所有真命题都为判定定理,希望各位读者不要随意更改。)(第五条对,如果对角相等,那么邻角之和的二倍等于360,那么邻角之和等与180,那么对边平行,(两组对边分别平行的四边形是平行四边形)所以这个四边形是平行四边形)编辑本段性质(矩形、菱形、正方形都是特殊的平行四边形。)(1)平行四边形对边平行且相等。(2)平行四边

7、形两条对角线互相平分。(3)平行四边形的对角相等,两邻角互补。(4)连接任意四边形各边的中点所得图形是平行四边形。(推论)(5)平行四边形的面积等于底和高的积。(可视为矩形)(6)过平行四(收藏好 范 文,请便下次访问,bc=4cm,求 abcd 的周长。解:四边形abcd是平行四边形3.连结ac,已知abcd的周长等于20 cm, ac=7 cm,求abc的周长。cba四、小组合作探究:证明:平行四边形的对角线互相平分五总结性质:a ddbc六、巩固练习:1.已知o是 abcd的对角线交点,ac=10cm,bd=18cm,ad=?12cm,则boc?的周长是_2. 如图所示,平行四边形abc

8、d的对角线相交于o点,且abbc,过o点作oeac,交bc于e,如果abe的周长为b,则平行四边形abcd的周长是()。a. b b. 1.5bc. 2bd. 3badbec七、学以致用:证明:夹在两条平行线间的平行线段相等。八、巩固练习:1、已知:如图平行四边形abcd,e,f是直线bd上的两点,且e= f。求证:ae=cfc2、已知:如图,abcd的对角线ac,bd相交于点o,过点o的直线与ad,bc分别相交于点e,f. d 求证:oe=of.bf九、自我检测:1.在abcd中,a= 50 ?,则2.如果abcd中,a+c=240,则3.如果abcd的周长为28cm,且ab:bc=25,那

9、么,cm, cm,3、已知:如图,ac,bd是abcd的两条对角线,且aebd,cfbd,垂足分别为e,f,求证:ae=cf.b十、能力提高: 4、已知:在abcd中,点e,f在对角线ac上,且af=ce.d线段be与df之间有什么关系?请证明你的结论.a若去掉题设中的af=ce,请添加一个条件使be与df有以上同样的性质. b第四篇:命题与证明 平行四边形 教案命题与证明1、 定义(一般地,能清楚地规定某一名称或术语意义的句子叫做该名称或术语的定义)2、 命题(一般地,判断一件事情的句子叫做命题)命题是一个“判断句”,判断“是”或“非”其中正确的命题叫做真命题,错误的命题叫做假命题,如“对顶

10、角相等”是真命题,“相等的角是对顶角”是假命题.注意:(1)命题是语句,而且必须是能判断正确和错误的句子 (2)错误的命题也是命题过直线外一点做一条直线与已知直线垂直。过直线外一点做一条直线,要么与已知直线相交,要么与已知直线平行。3、每个命题是由条件(题设)和结论(题断)两部分组成条件是已知事项,结论是由已知事项推出的事项,命题常写成“如果那么”的形式一般形式是“如果p,那么q”,其中用“如果”开始的部分是条件,用“那么”开始的部分是结论(判断清楚哪些是条件,哪些是结论)写成“如果,那么”的形式在同一个三角形中 等角对等边角平分线上的点到角两边的距离相等同角的余角相等3、 公理、定理、推论人

11、们在长期实践中检验所得的真命题,并作为判断其他命题真假的依据,这样的真命题叫做公理如“过两点有且只有一条直线”;“两点之间,线段最短”等等有些命题的正确性是通过推理证实的,并被选定作为判定其它命题真假的依据,这样的真命题叫定理由公理、定理直接得出的真命题叫做推论 如 三角形内角和定理三角形的内角和等于180推论1 直角三角形的两锐角互余推论2 三角形的一个外角等于与它不相邻的两个内角的和推论3 三角形的一个外角大于与它不相邻的任何一个内角4、 证明真命题的方法根据题设、定义、公理、定理等,经过逻辑推理,来判断一个命题是否正确,这样的推理过程叫证明.证明一个真命题一般按以下步骤进行:(1)审题,

12、分清命题的条件与结论.(2)画图,依题意画出图形,画图时应做到图形正确且具有一般性,切忌将图形特殊化.(3)写“已知”“求证”,按照图形,分析、探求解题思路,然后写出证明过程,证明的每一步都要做到叙述清楚,而且要有理有据.5、 证明假命题的方法证明一个命题是假命题,只需举一个“反例”即可,也就是举出一个符合命题的条件而不符合结论的例子. 用反证证明下列命题是假命题有一条边、两个角相等的两个三角形全等任何三条线段都能组成三角形6、 重难点及归纳命题的理解:本节的一个难点是找出一个命题的题设和结论,它是后面证明中,书写已知求证的基础,对那些条件结论不明显的命题应在学习中多练,必要时结合图形来区分例

13、如命题“如果两条直线和第三条直线平行,那么这两条直线也互相平行”,其中“两条直线和第三条直线平行”是条件,“这两条直线也平行”是结论再如命题,“对顶角相等”,它的条件和结论不明显,应将它改成“如果两个角为对顶角,那么这两个角相等”,再指出条件和结论定义、命题、公理和定理之间的联系与区别这四者都是句子,都可以判断真假,即定义、公理和定理也是命题,不同的是定义、公理和定理都是真命题,都可以作为进一步判断其他命题真假的依据,只不过公理是最原始的依据,而命题不一定是真命题,因而它不一定能作为进一步判断其他命题真假的依据证明真命题的方法和步骤,难点是分析证明思路,有条理地写出推理过程三角形内角和定理的三

14、个推论常用来求角的大小和进行角的比较7、 证明的思路: 从已知出发,推出可能的结果,并与要证明的结论比较,直至推出最后的结果。从要证明的结论出发,探索要使结论成立,需要什么条件,并与已知条件对照,直到找到所需要的并且是已知的条件。探索证明:在三角形的内角中,至少有一个角大于或等于60度9、用反证法(证明的思路如何,苦李子的故事)用反证法证明命题,一般有三个步骤:反设 假设命题的结论不成立(即假设命题结论的反面成立)归谬 推出矛盾(和已知或学过的定义、定理、公理相矛盾,或者与假设所推出的任何一个已知相矛盾) 结论 从而得出命题结论正确。例如用反证法证明:在同一个平面内,如果两条直线都和第三条直线

15、平行,那么这两条直线也互相平行。在三角形的内角中,至少有一个角大于或等于60度例1两直线被第三条直线所截,如果同位角相等,那么这两直线平行已知:如图12a1b求证:abcd证明:设ab与cd不平行c2d那么它们必相交,设交点为md这时,1是ghm的外角a112g这与已知条件相矛盾2ab与cd不平行的假设不能成立habcdc例2.求证两条直线相交只有一个交点证明:假设两条直线相交有两个交点,那么这两条直线都经过相同的两个点,这与“经过两点有且只有一条直线”的直线公理相矛盾,所以假设不能成立,因此两条直线相交只有一个交点。(从以上两例看出,证明中的三个步骤,最关键的是第二步推出矛盾。但有的题目,第

16、一步“反设”也要认真对待)。例3.已知:m2是3的倍数,求证:m 也是3的倍数例4.求证:2不是有理数平行四边形1、 四边形的定义2、 定理:四边形的内角和等于360度推论:四边形的外角和等于360度n边形的内角和外角和(为什么)正五边形能镶嵌平面吗(为什么)单独和镶嵌平面的正多边形有哪几种?为什么只有这几种?(202*浙江省,8,3分)如图,在五边形abcde中,bae=120, b=e=90,ab=bc,ae=de,在bc,de上分别找一点m,n,使得amn的周长最小时,则amn+anm的度数为()(如何作辅助线,培养感觉)a. 100b110c. 120d. 1303、 平行四边形的定义

17、性质定理:平行四边形的对角相等定理1:平行四边形的两组对边分别相等。推论1:夹在两条平行线间的平行线段相等。推论1:夹在两条平行线间的垂线段相等。定理2:平行四边形的对角线互相平分。4、 中心对称图形定义 对称中心性质:对称中心平分两个对称点的线段。(在平面直角坐标系中,点(x,y)关于原点对称的点的坐标是多少?为什么?)5、 平行四边形的判定定义定理1:一组对边平行且相等的四边形是平行四边形定理2:两组对边分别相等的四边形是平行四边形定理3:对角线互相平分的四边形是平行四边形6、三角形的中位线定理(如何证明?)7、逆命题与逆定理两个命题,如果第一个命题的题设是第二个命题的结论,第一个命题的结

18、论是第二个命题的题设,那么这两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。 每个命题都有逆命题。每个定理都有逆命题。如果一个定理的逆命题也是定理,那么这两个定理叫做互逆定理,其中的一个定理叫做另一个定理的逆定理。因此,每个命题有逆命题;每个定理有逆命题,但不一定有逆定理。1. (202*浙江金华,15,4分)如图,在abcd中,ab3,ad4,abc60,过bc的中点e作efab,垂足为点f,与dc的延长线相交于点h,则def的面积是.3. (202*四川成都,20,10分) 如图,已知线段abcd,ad与bc相交于点k,e是线段ad上一动点.5cd1(1)若bk=

19、2kc,求ab的值;(2)连接be,若be平分abc,则当ae=2ad时,猜想线段ab、bc、cd三者之间有怎样的等量关系?请写出你的结论并予以证明再探究:当ae=nad (n?2),而其余条件不变时,线段ab、bc、cd三者之间又有怎样的等量关系?请直接写出你的结论,不必证明6、如图,已知abc中,?abc?45, f是高ad和be的交点,cd?4,则线段df的长度为().ab 4cd?第五篇:命题与证明 平行四边形练习典型例题剖析例1、将下列各句改写成“如果,那么”的形式(1)对顶角相等;(2)等角的余角相等;(3)垂直于同一条直线的两条直线互相平行;(4)同旁内角互补,两直线平行;分析:

20、省略掉词语的命题通常采取仔细分析,把省略掉的词语重新补上,或根据命题画出准确图形,再根据图形,把命题完整写出来,根据这些方法研究,我们便可着手改写了解:(1)如果两个角是对顶角,那么这两个角相等;(2)如果两个角是等角的余角,那么这两个角相等;(3)如果两条直线都和第三条直线垂直,那么这两条直线互相平行;(4)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行;例2、指出下列命题的条件部分和结论部分(1)直角都相等;(2)互为邻补角的两个角的平分线互相垂直;(3)直线外一点与直线上各点连结的所有线段中,垂线段最短;(4)大于90而小于180的角是钝角;(5)两个角的和等于平角时,这

21、两个角互为补角分析:解答这类问题,必须弄清命题由哪两部分组成,进一步弄明白条件与结论所表示的意思便可找出条件与结论对省略掉词语的命题应先设法补上,再着手找题设与结论命题的条件与结论不好用文字叙述时,要用符号写出条件和结论,但必须说明符号所表示的意义解:(1)条件:两个角都是直角;结论:这两个角相等(2)条件:互为邻补角的两个角的两条平分线;结论:这两条角平分线互相垂直(3)条件:直线外一点与直线上各点连结的所有线段;结论:垂线段最短(4)条件:90结论:180; 是钝角(5)条件:两个角的和等于平角;结论:这两个角互补例3、判断下列命题的真假,如果是假命题,请说明理由(1)两点之间,线段最短(

22、2)如果一个数的平方是9,那么这个数是3(3)同旁内角互补(4)过一点有且只有一条直线与已知直线平行(5)如果ab=0,那么a=0,b=0(6)两个锐角的和是锐角分析:要判定一个命题是假命题,只要举出一个例子(反例)即可于是以上各题真假便眉目分明了 解:(1)真命题,这是关于线段的一个公理(2)假命题,因为一个数的平方是9,这个数也可能是3(3)假命题,任意二条直线被第三条直线所截,都有同旁内角产生,只有两条平行线被第三直线所截,才有同旁内角互补的结论(4)假命题,如果这个点在已知直线上,就无法作出一条直线与已知直线平行(5)假命题,如果a=2,b=2,2(2)=0,但a20,b=20(6)假

23、命题,如60和50的角都是锐角,但它们的和是钝角例4、区分下列语句中,哪些是定义,哪些是公理,哪些是定理:(1)经过两点有一条直线,并且只有一条直线;(2)两点之间,线段最短;(3)有公共端点的两条射线组成的图形叫做角;(4)对顶角相等;(5)垂线段最短分析:只要理解定义,公理,定理的意义,便可一一区分谁是定义,谁是公理,谁是定理解:(1)、(2)是公理;(3)是定义;(4)、(5)是定理例5、完成以下证明,并在括号内填写理由:已知:如图所示,1=2,a=3.求证:acde.例6、如下图,acd是abc的外角,be平分abc,ce平分acd,且be、ce交于点e求证:例7、如图,ce是abc的外角acm的平分线,ce交ba的延长线于点e,试说明bacb成立的理由.例8、已知:如图ad为abc的角平分线 e为bc的中点过e作ef ad,交ab于m,交ca延长线于f。 cn ab交fe的延长线于n。求证:bm=cf例9、求证:没有一个有理数的平方等于3例10、求证:三角形的三条边的垂直平分线交于一点例11、求证:等腰三角形的底角是锐角 第 13 页 共 13 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 汇报体会

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁