微分方程建模.ppt课件.ppt

上传人:醉**** 文档编号:11517761 上传时间:2022-04-20 格式:PPT 页数:41 大小:1.04MB
返回 下载 相关 举报
微分方程建模.ppt课件.ppt_第1页
第1页 / 共41页
微分方程建模.ppt课件.ppt_第2页
第2页 / 共41页
点击查看更多>>
资源描述

《微分方程建模.ppt课件.ppt》由会员分享,可在线阅读,更多相关《微分方程建模.ppt课件.ppt(41页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 当我们描述实际对象的某些特性随时间(空当我们描述实际对象的某些特性随时间(空间)而演变的过程、分析它的变化规律、预测它间)而演变的过程、分析它的变化规律、预测它的未来形态、研究它的控制手段时。通常要建立的未来形态、研究它的控制手段时。通常要建立对象的动态模型。对象的动态模型。 在许多实际问题中,当直接导出变量之间的函在许多实际问题中,当直接导出变量之间的函数关系较为困难,但导出包含未知函数的导数或数关系较为困难,但导出包含未知函数的导数或微分的关系式较为容易时,可用建立微分的关系式较为容易时,可用建立微分方程模微分方程模型型的方法来研究该问题。的方法来研究该问题。2感谢你的欣赏2019-10

2、-9一、数学建模的基本思维过程一、数学建模的基本思维过程 转化实际问题转化实际问题 1、对要讨论的问题所涉及的重要特征进行合理的数、对要讨论的问题所涉及的重要特征进行合理的数学刻画(转化),即用数学语言对问题涉及到的重学刻画(转化),即用数学语言对问题涉及到的重要特征进行表述要特征进行表述. 2、寻求的实际问题的文字叙述,利用一些原则或、寻求的实际问题的文字叙述,利用一些原则或定律,将其转化为数学描述。定律,将其转化为数学描述。解数学问题解数学问题 用数学工具求解得到的数学问题。用数学工具求解得到的数学问题。3感谢你的欣赏2019-10-9二、微分方程模型二、微分方程模型 涉及涉及“改变改变”

3、、“变化变化”、“增加增加”、“减减少少”、“衰变衰变”、“边际边际”、“速度速度”、 “运运动动”、“追赶追赶”、“逃跑逃跑”、等等词语的确、等等词语的确定性连续问题。定性连续问题。b、微分方程建模的基本手段、微分方程建模的基本手段 微元法微元法 等等a、微分方程建模的对象、微分方程建模的对象 4感谢你的欣赏2019-10-9 1、寻找改变量、寻找改变量 一般说来微分方程问题都遵循这样的一般说来微分方程问题都遵循这样的文字等式文字等式变化率(微商)变化率(微商)=单位增加量单位增加量-单位减少量单位减少量 等式通常是利用已有的原则或定律。等式通常是利用已有的原则或定律。c、微分方程建模的基本

4、规则、微分方程建模的基本规则 2、对问题中的特征进行数学刻画、对问题中的特征进行数学刻画3、用微元法建立微分方程;、用微元法建立微分方程;4、确定微分方程的定解条件(初边值条件);、确定微分方程的定解条件(初边值条件);5、求解或讨论方程(数值解或定性理论)、求解或讨论方程(数值解或定性理论)6、模型和结果的讨论与分析。、模型和结果的讨论与分析。 5感谢你的欣赏2019-10-9 对论文的评价主要以对论文的评价主要以“假设的合理性、建模的创造性、结假设的合理性、建模的创造性、结果的正确性和文字表述的清晰性果的正确性和文字表述的清晰性”为标准。所以,在论文为标准。所以,在论文中应努力反映出这些特

5、点。中应努力反映出这些特点。三、三、 数学建模论文的撰写方法数学建模论文的撰写方法 6感谢你的欣赏2019-10-9论文格式及组成论文格式及组成题目题目摘要,关键词摘要,关键词 问题重述问题重述模型假设模型假设分析与建立数学模型分析与建立数学模型数学模型的求解数学模型的求解 模型检验模型检验(总结与评价总结与评价)模型推广模型推广 参考文献参考文献附录(若有)附录(若有)正文正文7感谢你的欣赏2019-10-91、题目、题目 论文题目是一篇论文给出的涉及论文范围及水平的第一个论文题目是一篇论文给出的涉及论文范围及水平的第一个重要信息。要求简短精练、高度概括、准确得体、恰如其重要信息。要求简短精

6、练、高度概括、准确得体、恰如其分。既要准确表达论文内容,恰当反映所研究的范围和深分。既要准确表达论文内容,恰当反映所研究的范围和深度,又要尽可能概括、精练。度,又要尽可能概括、精练。8感谢你的欣赏2019-10-92、摘要、关键词、摘要、关键词 摘要是论文内容不加注释和评论的简短陈述,其作用是使读者摘要是论文内容不加注释和评论的简短陈述,其作用是使读者不阅读论文全文既能获得必要的信息。在数学建模论文中,摘不阅读论文全文既能获得必要的信息。在数学建模论文中,摘要是非常重要的一部分。要是非常重要的一部分。数学建模论文的摘要应包含以下内容:数学建模论文的摘要应包含以下内容:所研究的实际问题、建立的模

7、型、求解模型的方法、获得的基所研究的实际问题、建立的模型、求解模型的方法、获得的基本结果以及对模型的检验或推广。本结果以及对模型的检验或推广。论文摘要需要概括、简练的论文摘要需要概括、简练的语言反映这些内容,尤其要突出论文的优点,如巧妙的建模方语言反映这些内容,尤其要突出论文的优点,如巧妙的建模方法、快速有效的算法、合理的推广等。一般科技论文的摘要要法、快速有效的算法、合理的推广等。一般科技论文的摘要要求不列举例证,不出现图、表和数学公式,不自我评价,且字求不列举例证,不出现图、表和数学公式,不自我评价,且字数数200以内。前几年,全国大学生数学建模竞赛要求摘要字数应以内。前几年,全国大学生数

8、学建模竞赛要求摘要字数应在在300字以内。字以内。但从但从2001年开始,为了提高论文评选效率,要求年开始,为了提高论文评选效率,要求将论文第一页全用作摘要,对字数已无明确限制。在摘要中也将论文第一页全用作摘要,对字数已无明确限制。在摘要中也可适当出现反映结果数学公式。可适当出现反映结果数学公式。9感谢你的欣赏2019-10-93、问题重述、问题重述数学建模比赛要求解决给定的问题,所以论文中应叙述数学建模比赛要求解决给定的问题,所以论文中应叙述给定问题。撰写这部分内容时,不要照抄原题,应把握给定问题。撰写这部分内容时,不要照抄原题,应把握问题的实质,再用较精练的语言叙述问题。问题的实质,再用较

9、精练的语言叙述问题。10感谢你的欣赏2019-10-94、模型假设、模型假设 建模时,要根据问题的特征和建模目的,抓住问题的本质,建模时,要根据问题的特征和建模目的,抓住问题的本质,忽略次要因素,对问题进行必要的简化,做出一些合理的忽略次要因素,对问题进行必要的简化,做出一些合理的假设。模型假设部分要求用精练、准确的语言列出问题中假设。模型假设部分要求用精练、准确的语言列出问题中所给出的假设,以及为了解决问题所做的必要、合理的假所给出的假设,以及为了解决问题所做的必要、合理的假设。假设作得不合理或太简单,会导致错误的或无用的模设。假设作得不合理或太简单,会导致错误的或无用的模型;假设作得过分详

10、尽,试图把复杂对象的众多因素都考型;假设作得过分详尽,试图把复杂对象的众多因素都考虑进去,会使工作很难或无法继续下去,因此常常需要在虑进去,会使工作很难或无法继续下去,因此常常需要在合理与简化之间作出恰当的折中。合理与简化之间作出恰当的折中。11感谢你的欣赏2019-10-95、分析与建立模型、分析与建立模型根据假设,用数学的语言、符号描述对象的内在规律,根据假设,用数学的语言、符号描述对象的内在规律,得到一个数学结构。建模时应尽量采用简单的数学工具,得到一个数学结构。建模时应尽量采用简单的数学工具,使建立的模型易于被人理解。在撰写这一部分时,对所使建立的模型易于被人理解。在撰写这一部分时,对

11、所用的变量、符号、计量单位应作解释,特定的变量和参用的变量、符号、计量单位应作解释,特定的变量和参数应在整篇文章保持一致。为使模型易懂,可借助于适数应在整篇文章保持一致。为使模型易懂,可借助于适当的图形、表格来描述问题或数据。当的图形、表格来描述问题或数据。12感谢你的欣赏2019-10-96、模型求解、模型求解使用各种数学方法或软件包求解数学模型。此部分应包使用各种数学方法或软件包求解数学模型。此部分应包括求解过程的公式推导、算法步骤及计算结果。为求解括求解过程的公式推导、算法步骤及计算结果。为求解而编写的计算机程序应放在附录部分。有时需要对求解而编写的计算机程序应放在附录部分。有时需要对求

12、解结果进行数学上的分析,如结果的误差分析、模型对数结果进行数学上的分析,如结果的误差分析、模型对数据的稳定性或灵敏度分析等。据的稳定性或灵敏度分析等。13感谢你的欣赏2019-10-97、模型检验、模型检验把求解和分析结果翻译回到实际问题,与实际的现象、把求解和分析结果翻译回到实际问题,与实际的现象、数据比较,检验模型的合理性和适用性。如果结果与实数据比较,检验模型的合理性和适用性。如果结果与实际不符,问题常出在模型假设上,应该修改、补充假设,际不符,问题常出在模型假设上,应该修改、补充假设,重新建模。这一步对于模型是否真的有用十分关键。重新建模。这一步对于模型是否真的有用十分关键。14感谢你

13、的欣赏2019-10-98、模型推广、模型推广模型的评价不要流于空泛,需对模型的意义、可信程度、模型的评价不要流于空泛,需对模型的意义、可信程度、精度等可能问题,需要认真地思考和讨论。精度等可能问题,需要认真地思考和讨论。将该问题的将该问题的模型推广到解决更多的类似问题,或讨论给出该模型的模型推广到解决更多的类似问题,或讨论给出该模型的更一般情况下的解法,或指出可能的深化、推广及进一更一般情况下的解法,或指出可能的深化、推广及进一步研究的建议。步研究的建议。15感谢你的欣赏2019-10-99、参考文献、参考文献 在正文中提及或直接引用的材料或原始数据,应注明出处,并在正文中提及或直接引用的材

14、料或原始数据,应注明出处,并将相应的出版物列举在考文献中。需标明出版物名称、页码、将相应的出版物列举在考文献中。需标明出版物名称、页码、著者姓名、出版日期、出版单位等。著者姓名、出版日期、出版单位等。 参考文献按正文中的引用次序列出,其中书籍的表述方式为:参考文献按正文中的引用次序列出,其中书籍的表述方式为: 编号编号 作者,书名作者,书名M,出版地:出版社,出版年。,出版地:出版社,出版年。 参考文献中期刊杂志论文的表述方式为:参考文献中期刊杂志论文的表述方式为: 编号编号 作者,论文名作者,论文名J,杂志名,出版年,卷期号:起止页码。,杂志名,出版年,卷期号:起止页码。 参考文献中网上资源

15、的表述方式为:参考文献中网上资源的表述方式为: 编号编号 作者,资源标题,网址,访问时间(年月日)。作者,资源标题,网址,访问时间(年月日)。 16感谢你的欣赏2019-10-910、附录、附录 附录是正文的补充,与正文有关而又不便于编入正文的内附录是正文的补充,与正文有关而又不便于编入正文的内容都收集在这里。包括:计算机程序、比较重要但数据量容都收集在这里。包括:计算机程序、比较重要但数据量较大的中间结果等。为便于阅读,应在源程序中加入足够较大的中间结果等。为便于阅读,应在源程序中加入足够的注释和说明语句。的注释和说明语句。17感谢你的欣赏2019-10-918最简单的数学模型之一最简单的数

16、学模型之一“航行问题航行问题”用用 x 表示船速,表示船速,y 表示水速,列出方程:表示水速,列出方程:75050)(75030)(yxyx答:船速每小时答:船速每小时20千米千米/小时小时.甲乙两地相距甲乙两地相距750千米,船从甲到乙顺水航行需千米,船从甲到乙顺水航行需30小时,从乙小时,从乙到甲逆水航行需到甲逆水航行需50小时,问船的速度是多少小时,问船的速度是多少?x =20y =5求解求解感谢你的欣赏2019-10-919航行问题航行问题建立数学模型的基本步骤建立数学模型的基本步骤 作出简化假设(船速、水速为常数);作出简化假设(船速、水速为常数); 用符号表示有关量(用符号表示有关

17、量(x, y表示船速和水速);表示船速和水速); 用物理定律(匀速运动的距离等于速度乘以用物理定律(匀速运动的距离等于速度乘以 时间)列出数学式子(二元一次方程);时间)列出数学式子(二元一次方程); 求解得到数学解答(求解得到数学解答(x=20, y=5);); 回答原问题(船速每小时回答原问题(船速每小时20千米千米/小时)。小时)。感谢你的欣赏2019-10-9四、四、 导弹跟踪问题导弹跟踪问题1、实验目的、实验目的 本实验主要涉及常微分方程。通过实验复习微分方程的建模和求解;介本实验主要涉及常微分方程。通过实验复习微分方程的建模和求解;介绍两种微分方程的数值方法:绍两种微分方程的数值方

18、法:Euler法和改进的法和改进的Euler法;还介绍了仿真方法;还介绍了仿真方法。法。203、数学模型、数学模型 微分方程建模的方法主要是依据守恒律来建立等量关系式。对于这个微分方程建模的方法主要是依据守恒律来建立等量关系式。对于这个问题,寻求等量关系是比较简单的。问题,寻求等量关系是比较简单的。 设坐标系如图设坐标系如图3.1所示,取导弹基地为原点所示,取导弹基地为原点 O(0,0),x 轴指向正东方轴指向正东方,y 轴指向正北方。轴指向正北方。2、实际问题、实际问题 某军的一导弹基地发现正北方向某军的一导弹基地发现正北方向120km处海面上有敌舰一艘以处海面上有敌舰一艘以 90km/h

19、的速度向正东方向行驶。该基地立即发射导弹跟踪追击敌艇,导弹速度为的速度向正东方向行驶。该基地立即发射导弹跟踪追击敌艇,导弹速度为 450km/h,自动导航系统使导弹在任一时刻都能对准敌艇。试问导弹在何,自动导航系统使导弹在任一时刻都能对准敌艇。试问导弹在何时何处击中敌舰?时何处击中敌舰?感谢你的欣赏2019-10-9 当当 t=0 时,导弹位于点时,导弹位于点O,敌艇位于点,敌艇位于点 A(0,H), 其中其中H=120(km)。)。222(3.1)dxdyvdtdt21设导弹在设导弹在t时刻的位置为时刻的位置为 P(x(t),y(t),由题意,由题意,感谢你的欣赏2019-10-9(0)0,

20、 (0)0(3.4)xy方程方程(3.1),(3.3)连同初值条件连同初值条件构成了一个关于时间变量构成了一个关于时间变量t的一阶微分方程组的初值问题。的一阶微分方程组的初值问题。其中其中 另外在另外在 t 时刻时刻, 敌艇位置为敌艇位置为 , 其中其中 。由于导弹轨迹的切。由于导弹轨迹的切线方向必须指向敌艇,即直线线方向必须指向敌艇,即直线 PM 的方向就是导弹轨迹上点的方向就是导弹轨迹上点 P 的切线方向的切线方向, 故有故有或写为或写为450(/ )wvkm h(,)eM v t H90(/ )evkm h(3.2)edyHydxv tx(3.3)etdydxHydtdtvx2222()

21、ed x dydxdydxHyvdydtdydtdt两边对两边对t 求导求导edxHyv txdy为了寻求为了寻求x与与y的关系的关系,要设法消去变量要设法消去变量t, 由式由式(3.2)得得感谢你的欣赏2019-10-921wvd yd td yd x即有即有把式把式(3.1)写为写为 代入上式代入上式,就得到轨迹方程就得到轨迹方程.这是一个二阶非这是一个二阶非线性微分方程线性微分方程,加上初值条件加上初值条件,则初值问题则初值问题22()edx d yHyvd yd t22200()(3.5)10(3.6)0(3.7)ewyyvd xHydyvdxdyxdxdy23感谢你的欣赏2019-1

22、0-9就是导弹轨迹的数学模型。值得注意的是,前面导出的一阶微分方程组就是导弹轨迹的数学模型。值得注意的是,前面导出的一阶微分方程组(3.1),(3.3)和和(3.4)实际上已经是一个数学模型了,不过多一个变量(或说参数)而已。实际上已经是一个数学模型了,不过多一个变量(或说参数)而已。2421pdpdyHy则(则(3.5)化为一阶可分离变量方程)化为一阶可分离变量方程 2()1d HydpHyp21HyC pp即即易得易得 00,ypCH得从而21HyppH 由初值条件由初值条件(3.7)即即 ,ewvd xpd yv记4、解析方法、解析方法方程(方程(3.5)可以降阶)可以降阶. 令令感谢你

23、的欣赏2019-10-9注意到上式可改写为注意到上式可改写为于是有于是有这样我们又得到一个可分离变量方程这样我们又得到一个可分离变量方程积分得积分得利用利用 于是导弹轨迹方程为于是导弹轨迹方程为21HyppH 12HHypHyy1(3.8)2dxHHydyHyy1111 ()()2(1)1HyHHyxCH0120,1yHxC知1121 ()()(3.9)2(1)11HyHHyHxH25感谢你的欣赏2019-10-9设导弹击中敌艇于设导弹击中敌艇于B(L,H), 以以 Y=H 代入代入(3.9)式式 , 得得而导弹击中敌艇的时刻而导弹击中敌艇的时刻将数据将数据 代入代入(3.10) , (3.1

24、1)式式 ,得得222(3.10)1weweHv uHLvv22(3.11)weweHvLTvvv120(),90(/ ),450(/ )ewHkm vkm h vkm h25(),0.2778( )LkmTh2( 3 .1 2 )1( 3 .1 3 )( 0 )0 ,( 0 )0( 3 .1 4 )d xpd ypd pd yHyxp265、数值方法、数值方法 将初值问题将初值问题(3.5) (3.7) 化为一阶微分方程组化为一阶微分方程组感谢你的欣赏2019-10-9取自变量取自变量 y 的步长为的步长为 ,于是得节点于是得节点相应点上的相应点上的 x 的值和的值和 p 的值记为的值记为

25、显然显然 , 有初值有初值条件条件 我们将介绍两种近似算法来进行数值处理我们将介绍两种近似算法来进行数值处理.Hhn0120,2 ,nyyh yhynhH0101,nnxxxppp和000,0.xp27( ,)kkx y,kt12100(3.15)1(3.16)0,0(3.17)kkkkkkkxxhpppphHyxp设导弹到达设导弹到达 处的时刻为处的时刻为 那么得到计算的迭代格式那么得到计算的迭代格式d xd y1,kkxxhd pd y1,kkpph2111,kkkkkkkpxxppphhHy Euler 方法方法 Euler 方法十分简单方法十分简单 , 就是用差商代替微商就是用差商代替

26、微商, 即以即以 代之以代之以 而而代之以代之以 这样有这样有感谢你的欣赏2019-10-9于是于是表表 3.1 是取是取 n=4 时的计算结果时的计算结果 , 读者可以用来检验程序或应用软件的正确性读者可以用来检验程序或应用软件的正确性. 表表 3.1 k yk xk pk 0 0 0 0 1 30 0 0.05 2 60 1.5 0.12 3 90 5.0 0.22 4 120 11.5 0.42此时此时,nnexLxTv11.5(),0.128( )LkmTh28感谢你的欣赏2019-10-9表表 3.2 是对于不同的是对于不同的 n 值所对应的计算结果值所对应的计算结果. 显然显然,

27、n 越大越大 (即即 h 越小越小), 结果就越精确结果就越精确. 表 3.2 n 4 8 12 24 48 96 120 240 L 11.52 15.96 17.97 20.55 22.25 23.33 23.58 24.15 T 0.128 0.177 0.200 0.228 0.247 0.259 0.262 0.268 29d xd td yd t22(3.18)1(3.19)1(0)0,(0)0(3.20)wewevdxdtHyv txvdydtv txHyxy注意,由问题(注意,由问题(3.1), (3.3) ,(3.4) 消去消去 t 推导出问题(推导出问题(3.5) (3.7

28、)是较为巧妙和偶然是较为巧妙和偶然的的.一般而言,一个微分方程组未必能消去一些变元而减少方程的个数。一般而言,一个微分方程组未必能消去一些变元而减少方程的个数。 那么,我们那么,我们能否直接对初值问题能否直接对初值问题 (3.1), (3.3), (3.4) 进行数值处理呢?答案是肯定的。实际上,只进行数值处理呢?答案是肯定的。实际上,只要由方程要由方程 (3.1), (3.3) 解出解出 和和 的表达式,这样问题变为的表达式,这样问题变为感谢你的欣赏2019-10-9取时间步长取时间步长 对应对应 时导弹轨迹上点的坐标为时导弹轨迹上点的坐标为 则则 Euler 格式为格式为当计算到当计算到

29、即停止即停止, 于是于是, ,t ktk(,),kkxy121200(3.21)1(3.22)10,0(3.23)wkkke kkwkke kkkvxxHyv txvyyv txHyxy1,kkyH yH1(),kkeLLxLxTv或30感谢你的欣赏2019-10-9表表 3.3 和表和表 3.4 分别列出了取步长分别列出了取步长 为为 0.1 和和 0.05 时的计算结果时的计算结果: 表 3.3 k tk xk yk 0 0.0 0.000 00 0.000 00 1 0.1 0.000 00 45.000 00 2 0.2 5.361 54 89.679 46 3 0.3 22.674

30、95 131.215 53 此时取此时取 0.1322.67495,0.25194LxT31感谢你的欣赏2019-10-9 表 3.4 k tk xk yk 1 0.05 0.000 00 22.500 00 2 0.10 1.037 36 42.976 07 3 0.15 3.412 05 67.350 41 4 0.20 7.646 15 89.448 43 5 0.25 14.867 90 110.757 96 6 0.30 29.194 80 128.107 02此时取此时取表表 3.5 是对应不同的是对应不同的 , 用用 Euler 法所得相应的步长推进次数法所得相应的步长推进次数

31、n 和计算结果和计算结果. 表 3.5 0.1 0.05 0.005 0.001 n 3 6 56 278 L 22.674 95 29.194 80 25.667 31 25.049 35 T 0.251 94 0.324 39 0.285 19 0.278 330.05629.19480,0.32439LxT32感谢你的欣赏2019-10-9 Euler 方法较为简单方法较为简单, 但也较为粗糙但也较为粗糙, 对形式较复杂的微分方程更易有较大的误差对形式较复杂的微分方程更易有较大的误差. 人人们设计了不少更精确的近似算法们设计了不少更精确的近似算法, 这里我们介绍其中的一种这里我们介绍其中

32、的一种, 进一步研究可看参考书进一步研究可看参考书.,kht tkh 33*111*111(,)(,)21(,)2kkkkkkkkkkhxxfxtfxtxxhfxt*1(,)kkkkxxhfxt其中其中其中其中 而改进的而改进的 Euler 迭代格式则是迭代格式则是00(,),()d xfx tx txd t1(,)kkkkxxhfxt . 改进的改进的 Euler 方法方法 (预报预报-校正法校正法) 以一维情况为例以一维情况为例, 对问题对问题Euler 迭代格式是迭代格式是感谢你的欣赏2019-10-9由积分表达式由积分表达式的几何意义看的几何意义看,右边为右边为 下方的曲边梯形下方的曲

33、边梯形, 从图从图 3.2 我们可以看出我们可以看出 Euler 法是法是用矩形来代替曲边梯形用矩形来代替曲边梯形, 而改进的而改进的 Euler 法则是用梯形来代替曲边梯形法则是用梯形来代替曲边梯形. 对问题对问题 (3.18) (3.20) , 我们写出相应的改进我们写出相应的改进 Euler 迭代格式迭代格式1( ),)kkthkktxxfxd( ),)fx34感谢你的欣赏2019-10-9*112*1*11*112*11*1*12*11(3 .2 4 )211(3 .2 5 )21(3 .2 6 )11wkkkkekkwkkkekkkwkkkekkwkkekkvxxxHyv txvyy

34、yv txHyvxxHyv txvyyv txHy2*100(3 .2 7 )0 ,0(3 .2 8 )kxy35感谢你的欣赏2019-10-9表表 3.6 和表和表 3.7 分别列出了取步长分别列出了取步长 为为 0.1 和和 0.05 时的计算结果时的计算结果: 表 3.6 k tk xk yk 0 0.0 0.000 00 0.000 00 1 0.1 2.680 77 44.839 73 2 0.2 12.575 24 88.286 79 3 0.3 22.072 42 130.255 69此时取此时取 表 3.7 k tk xk yk 1 0.05 0.518 68 22.488 0

35、4 2 0.10 2.105 96 44.921 95 3 0.15 5.098 21 67.202 13 4 0.20 10.160 96 89.069 06 5 0.25 19.656 46 108.978 98 6 0.30 24.240 89 130.990 300.10.05327.07242,0.30080LxT36感谢你的欣赏2019-10-9此时取此时取表表 3.8 是对应不同的是对应不同的 , 用改进的用改进的 Euler 法所得相应的步长推进次数法所得相应的步长推进次数 n 和计算结果和计算结果. 表 3.8 0.1 0.05 0.005 0.001 n 3 6 56 27

36、8 L 27.072 42 24.240 89 25.135 52 24.981 12 T 0.300 80 0.269 34 0.279 28 0.277 57624.24089,0.26934LxT 图图 3.3 画出了导弹轨迹由解析式所给出的精确曲线以及由画出了导弹轨迹由解析式所给出的精确曲线以及由 Euler 法和改进的法和改进的 Euler法进行数值计算法进行数值计算 所给出的近似曲线所给出的近似曲线.0.137感谢你的欣赏2019-10-96、仿真方法、仿真方法 如果建立微分方程很困难,或者微分方程很复杂而较难作出数值处理,如果建立微分方程很困难,或者微分方程很复杂而较难作出数值处

37、理, 常常可以常常可以用仿真方法。用仿真方法。所谓仿真方法,顾名思义,指的是模仿真实行为和过程的方法。在这个具体问题中,所谓仿真方法,顾名思义,指的是模仿真实行为和过程的方法。在这个具体问题中,就是一步步地模拟导弹追踪敌艇的实际过程。就是一步步地模拟导弹追踪敌艇的实际过程。 而计算机仿真,则是在计算机上通过而计算机仿真,则是在计算机上通过相应的程序和软件来实现对事件运行的实际过程的模拟。相应的程序和软件来实现对事件运行的实际过程的模拟。设导弹和敌艇在初始时刻(即设导弹和敌艇在初始时刻(即t=0 时)分别位于时)分别位于 P0(0,0) 和和 M0(0,H)。此时,导弹指向。此时,导弹指向M0。

38、而在。而在 t = 时,导弹的位置时,导弹的位置 P1(x1,y1),其中,其中 ,敌艇的位置则为,敌艇的位置则为 这时导弹沿这时导弹沿 P1 M1 方向飞行,方向飞行,P1 M1 的倾角为的倾角为 在在 t=2 时,时,导弹的位置为导弹的位置为 P(x,y),其中,其中110,wxyv1(,).eM vH1arctan;weHvv2112111212cos(3.29)sin(3.30)cos(3.31)()()sin(3.32)()()wweewwewxxvyyvvvHvHvvHv38感谢你的欣赏2019-10-9此时敌艇位置为此时敌艇位置为 , 导弹沿导弹沿 P2 M2 方向飞行方向飞行(

39、见图见图 3.4).以此方式以此方式, 一般地一般地, 设设 时时, 导弹位置为导弹位置为 敌艇的位置则为敌艇的位置则为导弹将沿导弹将沿 PkMk 方向飞行方向飞行, 那么那么, PkMk 的倾角为的倾角为 2(2,)eMvHt k(,),kkkPxy(,)keMkvHarctankkekHykvx39感谢你的欣赏2019-10-9从而从而 时时, 导弹位置为导弹位置为 , 其中其中而敌艇位置为而敌艇位置为 仍然可以如前那样仍然可以如前那样, 当当 时时, 仿真停止仿真停止; 或者事先给定误差界或者事先给定误差界 ,当当 时时, 仿真停止仿真停止, 这时这时 对于对于 我们用仿真迭代格式我们用

40、仿真迭代格式 (3.33) (3.36) 进行计算进行计算,结果与结果与 Euler 迭代格式的结果完全一致迭代格式的结果完全一致(见表见表 3.33.5). 这两种迭代格式实际上确实是相这两种迭代格式实际上确实是相同的同的, 建议读者自己验证一下建议读者自己验证一下. 值得注意的是值得注意的是, 在仿真方法中在仿真方法中, 我们根本没有用到微分方程组我们根本没有用到微分方程组(3.18)(3.20), 却得到了它却得到了它的一种离散形式的一种离散形式, 这是十分有意思的这是十分有意思的. (1)tk111(,)kkkPxy112222cos(3.33)sin(3.34)cos(3.35)()

41、()sin(3.36)()()kkwkkkwkekkekkkkekkxxvyyvkvxkvxHyHykvxHy1(1),).keMkvH1,kkyH yH1kyH1,keLLxTv0.1,0.05,0.0050.001,和40感谢你的欣赏2019-10-9五、实验任务五、实验任务 1. 应用数学软件或编制计算程序对问题应用数学软件或编制计算程序对问题 (3.12) (3.14) 进行数值计算,先运用进行数值计算,先运用Euler法,与表法,与表3.2以及表以及表3.3的数据比较,并以更小的步长计算结果;再用改进的的数据比较,并以更小的步长计算结果;再用改进的Euler法计法计算(步长与算(步长

42、与Euler法相同)。法相同)。 2在本实验介绍的计算过程中,我们是计算到在本实验介绍的计算过程中,我们是计算到 即停止,然后取即停止,然后取 ,这样做法可能会有不小的误差。有时甚至会出现整体步长改小而结果却未必这样做法可能会有不小的误差。有时甚至会出现整体步长改小而结果却未必能改进的情况。由于能改进的情况。由于Euler法或改进的法或改进的Euler法的计算格式中每一步值的取得仅仅依赖法的计算格式中每一步值的取得仅仅依赖上一步的值,因此在计算过程中改变步长是可行的,即当计算到上一步的值,因此在计算过程中改变步长是可行的,即当计算到 而而y远大远大于于H时,可缩小步长(例如为原来的十分之一)以

43、时,可缩小步长(例如为原来的十分之一)以xy作为新起点继续进行迭代。试用作为新起点继续进行迭代。试用这种变步长方法来改进在任务中得到的结果。这种变步长方法来改进在任务中得到的结果。3如果当基地发射导弹的同时,敌艇立即由仪器发觉。假定敌艇为一高速快艇,它即如果当基地发射导弹的同时,敌艇立即由仪器发觉。假定敌艇为一高速快艇,它即刻一刻一135km/h的速度与导弹方向垂直的方向逃逸,问导弹何时何地击中快艇?试建立的速度与导弹方向垂直的方向逃逸,问导弹何时何地击中快艇?试建立数学模型并求解。数学模型并求解。4、如果敌艇以、如果敌艇以135km/h的速度与导弹方向成固定夹角的方向逃逸,问导弹何时何地击的速度与导弹方向成固定夹角的方向逃逸,问导弹何时何地击中敌艇?试建立数学模型。并选择若干特殊角度进行计算。中敌艇?试建立数学模型。并选择若干特殊角度进行计算。5、对问题、对问题5的结果,你发现敌艇与导弹方向成何夹角逃逸才好?从结论中你又能得到的结果,你发现敌艇与导弹方向成何夹角逃逸才好?从结论中你又能得到些什么看法?些什么看法? 1,kkyH yH1kLx1,kkyH yH41感谢你的欣赏2019-10-9

展开阅读全文
相关资源
相关搜索

当前位置:首页 > pptx模板 > 工作办公

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁