基于认知过程的网络谣言综合分类方法研究-张鹏.pdf

上传人:1890****070 文档编号:111039 上传时间:2018-05-13 格式:PDF 页数:8 大小:973.14KB
返回 下载 相关 举报
基于认知过程的网络谣言综合分类方法研究-张鹏.pdf_第1页
第1页 / 共8页
亲,该文档总共8页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《基于认知过程的网络谣言综合分类方法研究-张鹏.pdf》由会员分享,可在线阅读,更多相关《基于认知过程的网络谣言综合分类方法研究-张鹏.pdf(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、囤童喜I毒锯 2016年第4期专题:网络舆情风险管理研究(下)基于认知过程的网络谣言综合分类方法研究米张鸱兰月新李吴青瞿志凯冲国人民武装警察部队学院河北廊坊065000)摘要:对网络谣言进行合理综合分类是科学管理网络谣言的一项重要工作。文章从人们对网络谣言认知过程出发,采用Hayashi数量化理论III,对49种网络谣言的7种属性给以评分,通过对得到的属性矩阵进行计算,最终得到不同网络谣言的相对位置图,通过聚类发现49种网络谣言可根据阈值的调节调整网络谣言的类型数量从认知的角度可分为简单谣言、复杂谣言、不明确谣言(模糊谣言)3种类型。关键词:网络谣言;谣言认知;舆情管理;Hayashi数量化理

2、论III中图分类号:G203 文献标识码:A DOI:1011968tsyqb100369382016069Research of the Comprehensive Classification Method of Internet Rumors Based onthe Cognitive ProcessAbstract Reasonable comprehensive classification of intemet rumors iS an important work of the scientific managementof Internet rumorsThis article

3、,from the perspective people7S cognitive process of internet rumors,uses the Hayashiquantification theory III to score on the seven attributes of 49 kinds of Internet rumorsugh the calculation on theattribute matrixthe resulting relative locations of different Internet rumors are eventually obtained

4、Through clustering。rumors Can be adjusted according to the threshold of the rumor type and from the perspective of cognition,the 49 kindscan be divided into simple rumors,complex rumorsand indistinct rumorsKey words Internet rumor;rumor cognition;public opinion management;Hayashi quantification theo

5、ry m进入2l世纪随着社会经济文化的快速发展中国处于社会调整转型期的各类问题不断涌现。据2016年1月的统计数据截至2015年12月中国网民规模已达688亿互联网普及率达到503其中手机端用户规模在2015年12月达620亿有901的人通过手机上网1-2 3。互联网技术的进步不仅使信息传播效率和生活便捷度提高也极大增强了网络信息的流动性和扩散性。现实世界中的各类问题都会迅速转移到网络上以网络平台为阵地,快速爆发、繁殖、酝酿的各类舆情中,有些由于信息的异化而成为谣言。在手机网民中年轻和低收人群体所占比重较高上网人群特点直接反映出网络谣言的主要影响对象而这些人群反映的舆情信息将对整个网络正常的舆

6、情生态平衡起到一定的冲击作用其中的一些冲击会导致信息异化从而演变成网络谣言。各类突发事件导致的网络舆论经过酝酿、发酵在传播中由于增加了传播人的大量个人情感,尤其是新媒体和自媒体时代人人都是舆情的制造者和传播者当把突发事件放到整个媒体的聚光灯下时每个人都拿着放大镜看网络舆情,在讨论和解读舆情的同时改造着舆情,其中有一部分因信息传递过程中失真异化成为网络谣言。异化的舆情往往增加了信息的倾向性因而整个互联网世界乃至现实社会蕴含的潜在不稳定因素风险也逐渐增加,网络谣言作为互联网典型的信息异化型的网络舆情在规范管理方面的重要性不言而喻。在应对网络+本文系国家社科基金“公共安全视角下网络舆情风险建模与对策

7、研究”(项目编号:15CXW015)、全国统计科学研究计划重点项目“大数据背景下网络舆情风险预警研究”(项目编号:2014LZlO)、河北省自然科学基金青年基金“区域产业结构调整下的灾害间接经济影响重建模型研究”(项目编号:D2015507046)与国家社会科学基金重大项目“我国网络社会治理研究”(项目编号:14ZDA063)研究成果之一。收稿日期:201606-09;责任编辑:魏志鹏8万方数据囤素占始耘 2016年第4期异化的信息时我们必须要建立合理有效的网络识别体系。同时建立社会转型期间的综合网络谣言管理体系从而增强网络舆情管理能力这是维护健康有序的公共秩序的内在要求。网络谣言产生的原因多

8、种多样有的是蓄意为之歪曲事实真相也有的是无心而为但就其实质而言仍然是包含若干内在特征的信息这些信息均有其独特的属性通过这些属性可以从网络谣言的本身对其进行识别和分类3。严格来说网络谣言就是一种正常的文化现象,其实质是传统谣言通过网络媒介进行的信息交流但其具有传播效率高扩散范围广特点并且可以进行跨平台、跨区域的传播,降低了传统谣言传播的成本和时间限制4_。由于这种文化现象是随着人际交流而自然产生的带有普遍性且不以人的主观意志为转移。因此我们要承认谣言的这种客观存在的长期性,并清醒的认识到谣言的危害性。网络谣言侵害的对象不仅包括政治、经济,同时其对文化生活也都有影响。从网络谣言造成的损失看其可造成

9、经济损失、名誉损失、精神损失、不良政治影响、降低政府公信力,还会扰乱人们的思想干扰人们的生活。那么将不可控的网络谣言。通过谣言风险管理进行评估同时将网络谣言案例加以定量计算对今后管理实践中隐藏的更大或可控性差的网络谣言以及可控或随着时间或舆情规律日趋弱化的网络谣言采取不同的引导措施,进行分类管控。科学的分类工作能够提供更为高效的管理服务,更是理论和科学研究的基础(Blunler,1931)。研究表明分类是对科学问题中需要界定对象进行选择和处理的必须的概念性工作。分类尽管可能并无法提供一个共同的概念标准但能够提供比较或者对谣言间概念的框架进行区分界定。网络谣言在不同的原则和标准之下,分类形式也不

10、相同。类型不同实则代表人对谣言不同的认知角度。而不同的认知则代表着不同的理解深度和管理方式进而影响着管理水平。国内外有关学者均对网络谣言的分类工作予以重视,国内学者通过对网络谣言案例进行分析将网络谣言事件诱因分成自然灾害类、社会伤害类、食品安全类、意外伤害类、政府行动等类型5 3:而从传播心理状态进行分析可将网络谣言分为期望型、恐惧型、怨恨型、阴谋型等6类6:若依据造谣者的目的可将网络谣言划分为信息求证型、情绪宣泄型、利益攫取型和娱乐恶搞型4种类型7。但从整体上看现有文献中对谣言的分类形式仍以定性描述为主主要从谣言反应的原因或背景角度出发,而缺乏从网络谣言认知和传播过程的本身特性角度进行量化分

11、类的研究。而描述网络谣言量化分类过程的矩阵需要数据支持考虑到谣言分类的相关要素均需是一个明确的值简单的说就是“是”或“非”的单一判断,故构建的数量化矩阵是“01”型。而Hayashi数量化理论m(H理论III”)的特点是能将网络谣言要素的定性概念转化为“01”型矩阵同时进行聚类8_。综上对网络谣言进行综合分类是为了进一步识别网络谣言风险并对不同类型网络谣言采取不同的引导和控制。同时,网络谣言分类是进行网络舆情监控和风险管理以及建立网络谣言风险信息共享平台的基础是进一步识别新网络谣言的基础。本文拟通过对网络谣言自身的特性进行分析从人类认知过程的角度通过数量化的方法对网络谣言进行定性与定量相结合的

12、分析得到从谣言自然认知角度分析的网络谣言类型以期得到便于分类管理的方法。“H理论III”在涉及到分类方法方面有独特优势不仅可以进行人为和客观相结合的分类更可较大程度的减少人为干预便于计算机模糊识别网络谣言的特征属性实现自动化识别。1网络谣言数量化分类实践11 Hayashi数量化理论简介Hayashi数量化理论是由日本的林知己夫教授在1950年首先提出它根据不同的研究目的在方法上可分为数量化理论I、II、III和IV。其中可以同时对定性和定量变量进行处理的多元分析的是第1II类方法。与其他数量化方法相比“H理论III”的优点在于,反应矩阵可以既包含定量变量同时也包含定性变量,通过计算可将定性变

13、量转化为定量变量。“H理论III”所要解决的问题是以反应矩阵为基础对各类目和各样品赋予适当的得分使得反应情况q万方数据张鹏,兰月新,李昊青,等基于认知过程的网络谣言综合分类方法研究J图书与情报,2016(04):()()8一()15接近时样品和类目有相近的得分。其基本原理是基于“01”属性判断矩阵的构建和向量值的计算从而得到样本的得分。通过这种原理可将网络谣言的属性规范化、数量化,获得更便于计算机进行计算分析的基础数据结构因此,Hayashi数量化理论不仅在理工类的地质、气象、环保、生物、医学、产品设计方面适用,也在管理类的人力资源管理、企业管理、灾害和风险管理中得到应用12-141。本文通过

14、对网络谣言的内容、传播特点等一系列特性进行分析从对网络谣言综合认知的角度考虑选取数量化的方法进行定性与定量相结合的分析。最终得到网络谣言从认知角度分析的类型和分类管理的方法。12网络谣言的特性网络谣言是虚假的舆论信息每个谣言都具有独特性的属性不同属性谣言所表现的影响结果不同。这种特性类似于每个人的特质如善意性、敏锐度、观察力、忠诚度、攻击性、模仿能力等特质,通过这些属性我们才能确定一个具体的立体的人。以统一标准对每个人进行赋值其得分很难相同。这些潜在特质将决定在特殊情况的激发下每个人的表现结果不同。与前例类似不同网络谣言的特性也不同从人类认知的角度,可对每种网络谣言通过几个问题进行区分如网络谣

15、言的代表性、危害程度、影响力、攻击性、传播性、生命力和辨识度如何。具此可以根据谣言的相关属性研究谣言的潜在发展程度和造成的影响便于进行网络谣言管理。13网络谣言维度与判断标准网络谣言属性的适当描述与对网络谣言自身的认知特点直接相关进一步决定着网络谣言矩阵的形态。有研究表明网络谣言的影响力因素有扩散广度、内容热度和态度倾向,这些因素又包括若干种二级指标这一系列二级指标是较好的刻画谣言造成影响的关键因素15 J。奥尔波特认为谣言传播能力主要在于事件的重要性、模糊程度和信息的不对称,网络谣言的特性可以包括这些。传统观点认为,谣言模糊性越强越容易传播,而网络谣言在传播过程中为增强可信度配以相关细节描述

16、和相应资料,同时网络的匿名性也增加了谣言传播的可能性”6|。10网络谣言矩阵的构建基础是对矩阵属性赋值。本文的谣言矩阵构建原则是基于谣言认知模式和认知过程选择谣言属性由此构建谣言识别属性(见表1),表1列出了网络谣言的7种属性及其判断标准。构建矩阵时如对谣言案例的某属性有反应就认为是“l”否则是“0”。即看谣言属性更接近哪种判断标准依据判断标准定为“1”或“0”。表1网络谣言属性判断判断标准序号 谣言属性l O强一指涉及案例具有典型性不是偶发1 代表性 弱的在其他地区也可以复制的大一指的是对所宣传的事物可能造成经2 危害性 济、社会、政府公信力的损害或某行业整 小体受打击大一指社会整体的不信任

17、感影响人们3 影响力 小平稳的日常生活强一指案例中指名道姓的攻击道德楷4 攻击性 模,社会公知,学术团体,知名机构,党政 弱机关或者以上述主体的私生活为契机攻击其所代表的政府形象名誉损失等强一指案例具有跨媒体、跨地域的能力5 传播性 使媒体聚焦靠耸人听闻和恐怖暴力吸 弱引眼球强一指案例有目的性,商业或其他利益,6 生命力 背后有推手能够花样翻新不断增加新 弱的元素使谣言持续不断传播低一表示谣言所描述的案例事件本身的发生机理模糊程度很高细节扑朔迷离、 高7 辨识度复杂,真相隐蔽性好(即似真又像假的,说不清楚)注:表1中的“1”或“o”无大小和比较的关系,仅代表人对某一事件的看法的判断。14谣言判

18、断矩阵的构建网络谣言矩阵的构建是对网络谣言进行分类的关键它关系到最终结果与现实的贴近程度,判断的矩阵越客观最终图像越能正确反应客观实际。考虑到“H理论III”是一种可同时对定性和定量变量进行处理的多元分析方法。其基本原理是基于“0一l”属性判断矩阵的构建和向量值的计算从而得到样本的得分。该基本原理符合以上网络谣言属性的基础数据结构。选择“H理论IIl”将每个网络谣言样本的7个属性指标转换成“01”属性的二维判断矩阵,通过编程运算将样本得分在示意图中与原点距离作为样本聚类分析的输入数据实现对所考察风险样本的分类目的。因此科学构建网络谣言判断矩阵是万方数据囤童与惦4r,得到客观结果的基础。汪青云和

19、童玲m一从社会心理学和谣言传播学的角度。将网络谣言分为利他性谣言、利己性谣言和无利性谣言。在构建网络谣言判断矩阵时本文选取了互联网关注度较高的49个谣言案例选取过程要求案例来源丰富、类型多样,涉及名人类、腐败类、自然灾害类、事故灾难类、公共卫生类、社会安全类等多种类型的网络舆论网络谣言的选取具有典型性。并尽可能根据网络谣言的题目和基础内容对谣言属性进行判断矩阵构建构建适用于每种可能出现的谣言属性矩阵(见表2)。2 网络谣言计算及结果受篇幅所限本文介绍的“H理论III”的基本原理和计算方法参考文献11,14,18。通过Matlab软件支持的程序计算构造得到特征根并利用矩阵的前两个最大特征根(见表

20、4)对应的特征向量所表示的坐标进行描点21特征向量的求取经过计算谣言样本得分每个样本得到所选的2016年第4期7个属性的得分,矩阵特征向量为(03229,00579,O0419,00056,00281,00135,00195)。22特征根的有效性检验为了解每个特征根对总体特征向量的贡献程度需计算各特征根占特征向量的信息比重(见表3)。表3特征根占特征向量的比重序号 谣言属性 特征向量 信息比重1 代表性 03229 06597872 危害性 00579 O1 183083 影响力 00419 00856154 攻击性 00056 O0l 14435 传播性 0028l 00574176 生命力

21、 O0135 00275857 辨识度 O0195 0039845前第一、第二特征根包含的信息比共占7781满足“H理论III”对分类的量化精度要求。因此选取第一、第二特征根作为表述谣言得分的主要指标(见表4),在得分坐标图上用第1特征根b1表示横坐标,第2特征根b2表示纵坐标。表2网络谣言类型及判断矩阵ID Al lA21A3IA4IA5lA6IA7 ID A l IA2lA3lA4IA5IA6IA7 lD A l lA2IA3IA4IA5lA6IA7 ID Al|A2IA3IA4A5lA6IA7Dl 1、0、0、0、0、0、0 D14 1、1、1、1、1、1、1 D27 1 1,1、1、1

22、、1 1 D40 1,0,1、0,1,11D2 1 1 1 1 1 1、1 D15 1、1、1、1、1、l、1 D28,?0 1 1 0 0 1 D4l 1、1、1、1、1、1、0D3 0,1、1 0 0 0,1 D16 1 1j 0 1 0 0 1 D29 1 1、1、1 1 l?1 D42 0,1、1,0,0,0,0I)4 0j 1 1 1 0 0 1 D17 0、0、1、1、0、0、1 D30 1 1I lj 1 0 0 1 D43 1,1、1、1、1、1,1D5 1j 1、1、0 1 1、0 D18 1、l、1、1、1、1、1 D3,lj 1 0 1 0 0 0 D44 1、I、1、0

23、、1、0、1D6 1 1 1 0 1 1 1 D19 1、0、1、1、l、0、0 D32 1、0,1、1,1、1,1 D45 1、1,1j 0 1 1,0D7 1、1、1 1、1,1、0 D20 1、l、1、0、1、1、1 D33 1 l?l?1 1 1 0 D46 1 0 0 1 0 0 0D8 0,0,1,1,1,0,1 D21 1 1 1 I?,?1 0 D34 1 1 1,1 1 0 0 D47 0,0,0、0、1j 1 0D9 1 1 1、1 1 1、1 D22 1、1、1、0、l、1、1 D35 0 0 1 1、0 0 l D48 0 0,1、0、1j 0j 0D10 1 1 1

24、1 1 1j 0 D23 1、1、1、1、l、1、1 D36 1、1,1,1 1、1 l D49 1 0、1、1、1、0,0D,1 1,1,1、1,1,1,1 D24 1、1、1、0、l、1、1 D37 1 1 1I 1 1 1 1D12 1、1、1、1、l、1、1 D25 1 1i 1 0、,?1 1 D38 1、1,1、f,j、I、1D13 1、1、1、1、1、1、1 D26 1 1 1l 0、1、1、0 D39 0 1,1 1、1 1 0注:D卜车站尸体;D2-医疗失误事件;D3一杀人抛尸;D4一肆意杀人;D5一暴恐逃命;D6一暴恐衍生谣言;D7一暴恐预警;D8一新疆断网;D9一游行群体

25、事件;DIO一灾后谣言;D11一癌症村;D12一尸油煮粉;D13一艾滋食品;D14一扎艾滋针事件;D15一病死猪污江水;D16一官员叛逃;D17一官员间谍;D18一瓮安事件;D19一暴雨命亡;D20杀人后谣言;D21一地震预警;D22一“蛆橘”事件;D23一钴6()事件;D24-“摘肾”事件;D25一“盗童”事件;D26一抢盐事件;D27一名人“绯闻”;D28一名人国籍;D29-名人涉案;D30一官员贪腐;D31一名人去世;D32一名人隐私;D33一诋毁名人;D34一全家做官;D35一阿房宫重建;D36一灾谣攻击政府;D37一周克华事件;D38一郭美美事件;D39一税率改革;D40一养老安全;

26、D41一公民利益;D42-携带病毒;D43一致命病毒首现;D44一民粹抬头;D45一药物改性别;D46一豹猫家猫;D47一疯狂寻人;D48一抛售房产;D49-动车赔偿。万方数据张鹏,兰月新,李昊青,等基于认知过程的网络谣言综合分类方法研究J图书与情报,2016(04):00801523网络谣言分布示意图在二维坐标图上将各谣言的得分进行描点记录,并将坐标原点移到左下角进行坐标变换(见图1),图中横坐标代表网络谣言对第一特征值得分v1,纵坐标代表网络谣言对第二特征值得分v2,各点表示谣言样本基于其7种属性的相互位置关系。图中横坐标表示谣言传播性从弱到强的变化纵坐标表示谣言的生命力从小到大的变化。从

27、认知角度,传播性小且生命力弱的可认为是简单谣言与之相对的传播性大且生命力强的可认为是模糊、不明确的谣言介于两者之间的被称为复杂谣言。表4第一、第二特征根向量bl O3242 03913 02376 O1922 04399 05750 03524b2 00862 O093l -00220 -05995 04162 04033 -05368表3中第一、第二特征根向量的最大值对应的是传播性和生命力说明这两个属性是网络谣言最具代表性的特征与我们对网络谣言本身特征的理解相吻合。3 计算结果分析为便于观察各网络谣言分布规律,我们将(0一O2)作为原点,计算每种谣言与原点的距离。通过计算得到远离原点的谣言的

28、生命力和传播能力比较强。根据距离的网络谣言聚类图见图2。通过SPSSl30软件使用离原点的距离进行聚类操作,当阈值L1=(2,3)可以将49种谣言分为5类;当阈值L2=(4,5)时可以将49种谣言分为3类:当阈值L3=(5,23)可以将49种谣言分为2类:当阈值23时,谣言可分为l类(见图2)。31分类结果通过软件聚类将网络谣言从总体趋势上分为简单谣言、复杂谣言、模糊(不明确的)谣言三种。当阈值为(2,3)时,49种网络谣言从区域上可分为AE五种类型。体现了从简单到复杂的过渡形态。当阈值(4。5)时。从认知的角度认为网络谣言也可以分为简单、复杂、模糊三种类型(见表5)。主:为了能在图ee4-a

29、息简洁明快,信息表达清楚,网络谣言案例采用了简称(简称尽量忠实于原谣言所传达的信息图1网络谣言分布散点图万方数据a3-t,喀知 2016年第4期呈星呈呈黑露星呈最呈量星量零星罢罢量呈呈黑蓦娶要呈呈黑星呈呈呈呈呈量娶娶星呈景是娶里呈星罢星累呈要 i翟誉誉=扛=g。器恕苫哥!=、J磊;譬;g譬舍盆兰奇S拳;u磊譬岔器譬譬若一邕譬i;盒u器S= 。差专毒。害君7 P PP P t。星9P f P 2 9 2 2 9。2 7 9 7 9 9 i。喜:;善:喜8萝号亳事_三蔓:妻8主t蔓_二二_二_二_二_二_二_二_二_二_二_二_二:芝囊:之_二暮 l霍l li ll ii。 。 。 。 。e。s

30、“。 。 。 。 。“ 。 。 。e 。 。 。;P图2谣言类型聚类图表5从认知角度对谣言类型进行区分阈值 类型数量 类型 分类名称(4,5) 3 A、(B+C)、(D+E) 简单、复杂、模糊(5,23) 2 (A+B+C)、(D+E) 偏清晰、偏模糊23 1 (A+B+C+D+E) 所有谣言三种类型网络谣言的侧重点不同政府对应的管理方式也不相同。49种网络谣言综合分类类型,和每类谣言的解读方式以及个人和政府的应对方法(见表6)。32 聚类法分类的解读和政府应对办法距离原点的远近确定了谣言生命力和传播能力两种属性可以表现为从简单到复杂的性质。因此网络谣言通过距离上判断可给出不同类型谣言的总体分

31、类建议(见图1)。表6从人类认知的谣言属性角度给出网络谣言聚类的相关距离,并对这3种类型谣言进行定性描述及提供政府和公众的应对办法解读。从图1和图2中的分类与聚类结果看以距离为聚类元素具有参考意义。但其中也有若干谣言分类错位的情况如D40并未在E类型中,而是在D类型中:D34的位置表现似乎与聚类结果相差较大。町知图1仅作为谣言相互位置间的参考具体谣言类型还可根据使用需要与常识结合进行判断,同时谣言分类结果还与构建谣言矩阵的人的知识结构有直接关系。同时每个人由于知识结构不同,谣言风险抵御能力有差异因此,对于谣言的辨识能力有差表6网络谣言距离聚类分类建议表谣言类型 谣言编号及距离 类型 解读无关紧

32、要的谣言仅依据人们的知识水平也容易判简单谣言 D35(01169),D17(01169),IM6(01466)A 断出来,比较容易辟谣,不用过于担心。Dl(O2173),1)42(02286),D31(01908),D33(02133),D03(01936),B 对政府公信力是巨大挑战,需要国家从政治,经济复杂谣言 D08(01983),D16(o1908),D28(01649),004(01744),D30(o2223) 层面进行及时和耐心解释,公开面对谣言,建议官方辟谣,提供统一辟谣平台。民众通过谣言对自身D48(02740),D19(02502),D49(o2502); C 生命安全和经

33、济类安全表示担心。334(02997),IM4_(O3229),D32(03445),1)47(o3487),D39(03566),DD40(03718)从民众自身健康,生命安全角度考虑,谣言虽然带D7(03996),D10(o3996),D21(03996),D41(03996);D2(04004), 有一定的地域特征但这些谣言的起因都可能被复不明确 制,也极易发生在自己身边,扰乱人心,这类谣言往D9(04004),DI 1(04004),D12(04004),D13(o加04),D14(o4004),往是衍生谣言更为突出。建议政府加大力度对这类模糊谣言 D15(04004),D18(040

34、04),D23(0A004),D27(04004),D29E 谣言采取时时监控、及时进行辟谣,同时增强政府(04004),D36(04004),D37(04004),D38(04004),D43(04004);D6 公信力,抓紧公信力建设消除民众恐慌感。(o4231),D20(04231),D22(04231),D24(o4231),D25(o4231);D5(o4408),D26(04408),D45(04408)13万方数据张鹏,兰月新,李昊青,等基于认知过程的网络谣言综合分类方法研究J图书与情报,2016(04):008015别进而导致谣言对生活造成的影响也不同。33 网络谣言应对策略不

35、同类型的谣言传递的最重要的信息其所携带的内容是不同的这些内容所传递的信息量对于每个人影响是不同的区别在于每个人掌握真实信息的程度,如:“地震谣言”往往影响的是青少年、妇女等特殊敏感人群:而“房地产税征收”对家中有一定财产对自身固定资产关注较高的人的影响较大所以谣言影响的多为受众内心的潜意识。同样对谣言关注点的不同人群是由知识文化水平差异决定的每个人知识水平结构不同对于知识认可度也存在差距对于网络谣言的敏感性和可接受程度也不同。有的人接受谣言程度高对谣言识别度低,易受谣言欺骗。知识结构的差异性是相对而非绝对的。总体来说,知识文化水平较高的人群识别网络谣言的能力较强。因此政府在针对网络舆论或者网络

36、谣言管理过程中,在对不同谣言分组,进行区别引导的同时,更应重视对弱势群体网络谣言引导。从整体上提高个人的文化普及程度和辨识能力同时提高政府对特殊网络谣言的引导能力(如涉及公共安全类)。另外对于某些不置可否的谣言只要不威胁到公众安全和影响市场秩序可以允许谣言在一定可控范围内的发酵同时引导群众进行广泛的争论,从而实现群众认知的再教育、再提高这相当于提高个体对谣言风险的掌控程度谣言解释的过程也是民众思想意识进步的过程从基础上提升民众素养的根本之道仍然是文化教育和尊重科学,用文化和科学的力量启发民智。在网络谣言风险管理的过程中需要建立谣言案例库和谣言处置应对方案库当有新谣言出现时可以轻松进行分类比对。

37、按照已有谣言成功的处理方式,采取自由发酵或专业部门进行干预的方式涉及到各专业领域谣言如经济类谣言由银行、财政、税务等官方机构进行解释。具体对策主要包括:(1)增强民众判断力,增强政策解读,增加官方答疑平台;(2)提高互联网环境的科学性从技术手段打击恶意造谣者;(3)各地、各级政府应秉持科学、公开、公正的态度对待网上质疑的声音;(4)官方建立统一辟谣平台,及时辟谣跟踪信息走向掌控舆论走向。144讨论本文虽然实现了基于认知过程的网络谣言的数量化分类,但仍存在如下问题需进一步讨论:(1)本文分类结果有待改进个别谣言的类别归属与大众认知存在一定差距。究其原因本文仅从理论方法上对网络谣言分类进行了研究并

38、未对与认知不符的谣言类别从认知角度对判断矩阵进行修正。因此对于与认知有一定差距的谣言可通过对属性判断矩阵值加以调整重新构造矩阵并计算调整分类结果。通过调整各个谣言属性的模糊评分可提高分类结果的精度但模糊化会使判断矩阵更加复杂在谣言属性判断的权重方面也会有较大的模糊性不适用于谣言的快速分类定位。(2)谣言的产生和演变有其自身规律。随着人类社会生产关系和科技应用水平的不断提高谣言的产生和演变也会随着改变。辨识谣言的能力因个人或群体的认知水平不同而有差异。认知水平受从事职业、教育水平、知识文化背景的影响很大。不同的人看待同一种谣言的角度与对不同谣言特征的把握水平差距造成对谣言的感知结果也不同。因此,

39、在本文的探索过程中对谣言矩阵的判断仍然存在一定人为因素但随着对谣言产生的社会背景理解进一步深入判断矩阵的指标定义的进一步明确这个问题最终会得以解决。(3)本文通过“H理论III”将定性描述科学的转化为定量的值利用计算机程序处理大型矩阵的方便性使得原需人工处理矩阵的数量化理论得以应用。针对网络谣言分类方法的探索是在研究网络谣言属性的基础上进行的实验选取的网络谣言样本虽然只是近几年才在网络上流行的事件但现代典型谣言所具有的反复性和传播效应的相似性可为今后谣言分类研究做基础数据库。同时,本文所研究的分类方法是基于大众视角关注的谣言的通用分类,与具体部门、行业的喜好一定有区别,但可从方法上为其他学科谣

40、言的专业分类提供思路。5结论本文通过基于网络谣言的认知过程进行判断得万方数据囤素占精知 2016年第4期到的矩阵采用“H理论III”方法计算得到不同谣言的相对得分以及在网络谣言管理图谱中的相对位置差异通过距离聚类将不同的网络谣言通过阈值选取分为不同的谣言类别为定量化谣言识别提供了一种具体可实现的方法。通过研究得到了以下主要结论:(1)“H理论III”对于谣言分类是适合的。分类方法以构建反应谣言主要属性的矩阵为基础不仅能够分出合理的类别还可随需求变化阈值调节类型数量。同时,将谣言问题中定性描述转为定量的研究谣言属性比只用定性描述进行分类更具说服力更易于谣言自动化管理为多特征属性的网络谣言分析进行

41、有益的探索。(2)通过对阈值的变化可将谣言分为需要的数量类型。通过调整阈值谣言可在l类到5类之间进行分类调整。本文建议个人和行业可采用简单、复杂模糊,不明确这三类区分法便于从认知的角度对网络谣言进行管理。(3)从人类认知的角度看只有提高每个人的文化素养和科学水平改变自身的知识结构,才是有效辨识谣言,抵制谣言引导谣言的最佳途径。本文为网络谣言认知从人类自身知识水平结构属性分析的角度进行了有益的探索。参考文献:1中国互联网络信息中心CNNIC发布第37次中国互联网络发展状况统计报告EBOL20160420http:wwwcnniccngywmxwzxrdxw201620160lt20160122_

42、53283htm2陈滢浅析移动时代下的“互联网碎片经济”J未来与发展,2015(7):49523张鹏,兰月新,李昊青,等基于Hayashi数量化理论的网络谣言分类应对策略分析J情报杂志,2016,35(1):110一1154周裕琼当代中国社会的网络谣言研究M北京:商务印书馆,20125王国华,汪娟,方付建基于案例分析的网络谣言事件政府应对研究J情报杂志,2011(10):72766张钦朋网络谣言的传播机理及其治理路径:基于传播心理的分析J中共天津市委党校学报,2013(2):8790,967孙丽网络谣言的类型与特征J电子政务,2015(1):18238林知己夫数量化方法M东京:东洋经济新报社,

43、19729Hayashi cOn the quantification of qualitative data from the mathematicstatistical point of viewRAnnals of the Instituteof Stat Math,1950:125710Hayashi COn the prediction of phenomena from quMitmive data and the quantification of qualitative data from the mathematico statistical point of viewRAn

44、nals of the Institute of StatMath,1952:699811董文泉,周光亚,夏立显擞量化理论及其应用M长春:吉林人民出版社,197912“N,Gu W,Okada N,et a1The utility ofHayashiS quantification theory for assessment ofland surfaceindices in influencedust storm-a case studyinInnerMongolia ChinaJAtmospheric Environment,2005,39(1):11912613李宁,张鹏,胡爱军,等从风险

45、认知到风险数量化分类J地球科学进展,2009,24(1):43-4914张鹏,李宁,吴吉东,等基于风险认知过程的综合风险分类方法研究J安全与环境学报,2010,10(5):22122615兰月新突发事件网络谣言传播规律模型研究J图书情报工作,2012,56(14):576116t4,i丽,李自,刘子菱网络谣言的特点、传播原因及应对策略J法制博览旬刊,2013(6):4417汪青云,童玲突发事件中的网络谣言特征分析基于2010-2014年间网络谣言的研究J新闻知识,2015,7(6):6818张鹏基于Hayashi数量化理论III的综合风险分类研究D北京:北京师范大学,2009作者简介:张鹏1981一),男,中国人民武装警察部队学院消防指挥系讲师,博士,研究3-re:网络舆情、网络谣言研究:兰月新(1981一),男,中国人民武装警察部队学院基础部讲师,硕士研究生,研究方向:网络舆情研究;李吴青(1983一),男,中国人民武装警察部队学院训练部讲师,研究方向:网络舆情研究;,黜(1987一),男,中国人民武装警察部队学院研究生部硕士研究生,研究方向:网络舆情研究。15万方数据

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 研究报告 > 论证报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁