2022《相似三角形的性质》教学反思.docx

上传人:l**** 文档编号:10329266 上传时间:2022-04-10 格式:DOCX 页数:6 大小:30.33KB
返回 下载 相关 举报
2022《相似三角形的性质》教学反思.docx_第1页
第1页 / 共6页
2022《相似三角形的性质》教学反思.docx_第2页
第2页 / 共6页
点击查看更多>>
资源描述

《2022《相似三角形的性质》教学反思.docx》由会员分享,可在线阅读,更多相关《2022《相似三角形的性质》教学反思.docx(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2022相似三角形的性质教学反思相似三角形的性质教学反思相似三角形的性质教学反思1我在上相似三角形的性质这节课时,先复习全等三角形的性质:全等三角形的对应角相等;对应边相等;对应中线、对应角平分线、对应高线相等;周长相等;面积相等。根据全等三角形是特殊的相似三角形,诱导学生们在类比中,猜想相似三角形的性质,同学们积极性很高,抢着猜,猜完后,我又重点对三角形中的中线、角平分线、高线、周长、面积在相似三角形中与相似比的关系进行了讲解。书中没有完整推导过程,一开始让学生来验证结论的正确性时,学生有点困难,后来在我的引导下完成了相似三角形对应高的比等于相似比后,其它的也依次推理出来了,至于在讲对面积比

2、与相似三角形相似比的关系时,利用面积公式以及对应高的比等于相似比后,最终得出等于相似比的平方。然后又讲了这几者在相似三角形中的关系,只要知道其中一组的比就能知道其它比,而且学生对相似三角形面积的比等于相似比的平方印象非常深刻。最后,讲了一些经典例题,整个过程学生理解、接受能力都比较好。这一节课中,引导学生复习全等三角形的性质是“诱”的过程,让学生利用这个思维惯性去“猜想”相似三角形的性质,就是“思”的过程。这个“猜想”不是凭空瞎猜,而是在原有知识的.基础上的一种思维的延伸、拓展,能够培养学生良好的思维习惯。相似三角形的性质教学反思2我在上相似三角形的性质这节课时,先复习全等三角形的性质:全等三

3、角形的对应角相等;对应边相等;对应中线、对应角平分线、对应高线相等;周长相等;面积相等。根据全等三角形是特殊的相似三角形,诱导学生们在类比中,猜想相似三角形的性质,同学们积极性很高,抢着猜,大多数同学猜对了相似三角形的对应角相等;对应边成比例;对应中线、角平分线、高线的比等于相似比;周长的比等于相似比;可对面积的比有争议,有的说等于相似比,有的说等于相似比的平方。我又及时诱导:猜想并不能代替证明,它只是一个推理,一个假设,你们应该再进一步深入,把你们的猜想结果去证明,看到底是谁的对,让它更有说服力,同学们为了证明自己的猜想是正确的,马上开始证明,这一节课掌握的很好。而且对相似三角形面积的比等于

4、相似比的平方印象非常深刻。因为那是在有争议的情况下,得到的正确结论。这一节课中,引导学生复习全等三角形的性质是“诱”的过程,让学生利用这个思维惯性去“猜想”相似三角形的性质,就是“思”的过程。这个“猜想”不是凭空瞎猜,而是在原有知识的基础上的一种思维的延伸、拓展,能够培养学生良好的思维习惯相似三角形的性质教学反思3我在上相似三角形的性质这节课时,先复习全等三角形的性质:全等三角形的对应角相等;对应边相等;对应中线、对应角平分线、对应高线相等;周长相等;面积相等。根据全等三角形是特殊的相似三角形,诱导学生们在类比中,猜想相似三角形的性质,同学们积极性很高,抢着猜,大多数同学猜对了相似三角形的对应

5、角相等;对应边成比例;对应中线、角平分线、高线的比等于相似比;周长的比等于相似比;可对面积的比有争议,有的说等于相似比,有的说等于相似比的平方。我又及时诱导:猜想并不能代替证明,它只是一个推理,一个假设,你们应该再进一步深入,把你们的猜想结果去证明,看到底是谁的对,让它更有说服力,同学们为了证明自己的猜想是正确的,马上开始证明,这一节课掌握的很好。而且对相似三角形面积的比等于相似比的平方印象非常深刻。因为那是在有争议的情况下,得到的正确结论。这一节课中,引导学生复习全等三角形的性质是“诱”的过程,让学生利用这个思维惯性去“猜想”相似三角形的性质,就是“思”的过程。这个“猜想”不是凭空瞎猜,而是

6、在原有知识的基础上的一种思维的延伸、拓展,能够培养学生良好的思维习惯。相似三角形的性质教学反思4相似三角形的性质(1)是几何内容,数形结合比较多。于是我借助于多媒体教学制作了课件,节约板书的作图时间。本节课先复习相似三角形的基本性质,即相似三角形的对应角相等,对应边成比例。通过从三个边长分别为1,2,3的等边三角形入手引导学生思考:相似三角形的周长比、面积比与相似比之间有什么关系?学生进行了大胆猜想:“相似三角形周长比等于相似比,面积比等于相似比的平方”。接下来进行逻辑推理,并让学生自己尝试类推相似多边形周长比、面积比与相似比的关系。最后指导学生运用这两个性质解决实际问题,效果非常好。这节课让

7、我感触很多:在已有知识的基础上用类比化归的思想去探究新知,让学生充分体会数学知识之间的内在联系,以此激发学生的学习兴趣,通过教师的点拨引导,学生积极开展小组合作学习,交流探索新知,并且在不断探索中学会创造性学习由问题发散出新问题,培养学生的探索和创新能力。学生在得出相似三角形周长比等于相似比后,就及时提出由相似比如何求面积比,我让他们又讨论、探究,最后得出了结论。整个课堂气氛活跃。归纳起来,这一节课从始到终,学生们都主动地参与了课堂活动,积极地交流探讨,发现的问题较多:相似三角形的周长比,面积比,相似比在书写时要注意对应关系,不对应时,计算结果正好相反;这两个性质使用的前提条件是相似三角形等等。同学们讨论非常激烈,充分体现本节课堂教学取得了明显的效果。此外,教师的肯定、表扬与鼓励,会使学生始终保持高昂的学习热情,感受在探究性学习,创造性劳动中获得成功的乐趣。本文来源:网络收集与整理,如有侵权,请联系作者删除,谢谢!第6页 共6页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁