《中考总复习教案:多边形与平行四边形-巩固练习(提高).doc》由会员分享,可在线阅读,更多相关《中考总复习教案:多边形与平行四边形-巩固练习(提高).doc(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、中考总复习:多边形与平行四边形-巩固练习(提高)撰稿:赵炜 审稿:杜少波【巩固练习】一、选择题1如图,四边形ABED和四边形AFCD都是平行四边形,AF和DE相交成直角,AG=3cm,DG=4cm,ABED的面积是,则四边形ABCD的周长为( )A49cm B43cm C41cm D46cm2如图,在ABC中,已知AB=AC=5,BC=4,点E、F是中线AD上的两点,则图中阴影部分的面积是:( ) A.; B.2; C.3; D.43. 已知点A(2,0)、点B(,0)、点C(0,1),以A、B、C三点为顶点画平行四边形,则第四个顶点不可能在( )A第一象限 B第二象限 C第三象限 D第四象限
2、4.(2011安徽)如图,在四边形ABCD中,BADADC90,ABAD2,CD,点P在四边形ABCD的边上,若P到BD的距离为,则点P的个数为()A1 B2 C3 D45.如图,分别以RtABC的斜边AB、直角边AC为边向外作等边ABD和ACE,F为AB的中点,DE,AB相交于点G,若BAC=30,下列结论:EFAC;四边形ADFE为平行四边形;AD=4AG;DBFEFA其中正确结论的是( )A B C D 6 .如图,在ABCD中,E、F分别是边AD、BC的中点,AC分别交BE、DF于G、H, 则下列结论: ABECDF; AG=GH=HC; EG=; SABE=3SAGE 其中正确的结论
3、有( )A 1个 B 2个 C3个 D 4个二、填空题7. 如图,口ABCD中,点E在边AD上,以BE为折痕,将ABE向上翻折,点A正好落在CD上的点F,若FDE的周长为8,FCB的周长为22,则FC的长为_.8. 如图, E、F分别是ABCD 的两边AB、CD的中点, AF交DE于P, BF交CE于Q,则PQ与AB的关系是_.9. 如图,平行四边形ABCD中,ABC=60,AB=4,AD=8,点E、F分别是边BC、AD边的中点,点M是AE与BF的交点,点N是CF与DE的交点,则四边形ENFM的周长是_10.(2011梅州)凸n边形的对角线的条数记作an(n4),例如:a4=2,那么:a5=_
4、;a6-a5=_;an+1-an=_(n4,用n含的代数式表示)11.如图(1),四边形ABCD中,ABE1F1CD,ADBC,则图中共有_个平行四边形;如图(2),四边形ABCD中,ABE1F1E2F2CD,ADBC,则图中共有_个平行四边形;如图(3),四边形ABCD中,ABE1F1E2F2E3F3CD,ADBC,则图中共有_个平行四边形;一般地,若四边形ABCD中,E1,E2,E3,都是AD上的点,F1,F2,F3,都是BC上的点,且ABE1F1E2F2E3F3CD,ADBC,则图中共有_平行四边形.12.如图所示,中多边形(边数为12)是由正三角形“扩展”而来的,中多边形是由正方形“扩
5、展”而来的,依此类推,则由正n边形“扩展”而来的多边形的边数为_.三、解答题13.问题再现:现实生活中,镶嵌图案在地面、墙面乃至于服装面料设计中随处可见在八年级课题学习“平面图形的镶嵌”中,对于单种多边形的镶嵌,主要研究了三角形、四边形、正六边形的镶嵌问题、今天我们把正多边形的镶嵌作为研究问题的切入点,提出其中几个问题,共同来探究我们知道,可以单独用正三角形、正方形或正六边形镶嵌平面如图中,用正方形镶嵌平面,可以发现在一个顶点O周围围绕着4个正方形的内角试想:如果用正六边形来镶嵌平面,在一个顶点周围应该围绕着3个正六边形的内角问题提出:如果我们要同时用两种不同的正多边形镶嵌平面,可能设计出几种
6、不同的组合方案?问题解决:猜想1:是否可以同时用正方形、正八边形两种正多边形组合进行平面镶嵌?分析:我们可以将此问题转化为数学问题来解决、从平面图形的镶嵌中可以发现,解决问题的关键在于分析能同时用于完整镶嵌平面的两种正多边形的内角特点具体地说,就是在镶嵌平面时,一个顶点周围围绕的各个正多边形的内角恰好拼成一个周角验证1:在镶嵌平面时,设围绕某一点有x个正方形和y个正八边形的内角可以拼成一个周角根据题意,可得方程:90x+y=360,整理得:2x+3y=8,我们可以找到惟一一组适合方程的正整数解为结论1:镶嵌平面时,在一个顶点周围围绕着1个正方形和2个正八边形的内角可以拼成一个周角,所以同时用正
7、方形和正八边形两种正多边形组合可以进行平面镶嵌猜想2:是否可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌?若能,请按照上述方法进行验证,并写出所有可能的方案;若不能,请说明理由验证2:_;结论2:_上面,我们探究了同时用两种不同的正多边形组合镶嵌平面的部分情况,仅仅得到了一部分组合方案,相信同学们用同样的方法,一定会找到其它可能的组合方案问题拓广:请你仿照上面的研究方式,探索出一个同时用三种不同的正多边形组合进行平面镶嵌的方案,并写出验证过程猜想3:_;验证3:_;结论3:_14. 如图,在四边形ABCD中,A=90,ABC与ADC互补(1)求C的度数;(2)若BCCD且AB=AD,
8、请在图上画出一条线段,把四边形ABCD分成两部分,使得这两部分能够重新拼成一个正方形,并说明理由;(3)若CD=6,BC=8,S四边形ABCD=49,求AB的值 15.(2011厦门)如图,在四边形ABCD中,BAC=ACD=90,B=D(1)求证:四边形ABCD是平行四边形;(2)若AB=3cm,BC=5cm,AE=AB,点P从B点出发,以1cm/s的速度沿BCCDDA运动至A点停止, 则从运动开始经过多少时间,BEP为等腰三角形?16(2012广州)如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CEAB于E,设ABC=(6090)(1)当=60时,求CE的长;(2)当
9、6090时,是否存在正整数k,使得EFD=kAEF?若存在,求出k的值;若不存在,请说明理由连接CF,当CE2-CF2取最大值时,求tanDCF的值【答案与解析】一选择题1.【答案】D.2【答案】A.3.【答案】C4【答案】B.【解析】如图所示,作AEBD于E,CFBD于F,由题意得AEBDAB2,在边AB和AD上各存在一个点P到BD的距离为.ABAD,BAD90,ADB45.又ADC90,CDF45.CFCD1,在边BC和CD上不存在符合题意的点P.综上所述.5【答案】A.【解析】先证 ADFABC,可得DF=AC=AE.DFAE 且DF=AE四边形ADFE为平行四边形,即是正确的.6【答案
10、】D .二填空题7【答案】7.【解析】由题意知x+y+z=8,a+(y+a)+(z+x)=22,所以a=7.8【答案】PQAB,PQ=AB.9【答案】4+4 10【答案】5;4;n-1【解析】五边形有5条对角线;六边形有9条对角线,9-5=4;n边形有条对角线,n+1边形有条对角线,an+1-an=-=n-1 11.【答案】3 ;6 ;10,.12【答案】n(n+1)【解析】正三边形“扩展”而来的多边形的边数是12=34,正四边形“扩展”而来的多边形的边数是20=45,正五边形“扩展”而来的多边形的边数为30=56,正六边形“扩展”而来的多边形的边数为42=67,正n边形“扩展”而来的多边形的
11、边数为n(n+1)三.综合题13【解析】用正六边形来镶嵌平面,在一个顶点周围应该围绕着3个正六边形的内角验证2:在镶嵌平面时,设围绕某一点有a个正三角形和b个正六边形的内角可以拼成一个周角,根据题意,可得方程:60a+120b=360整理得:a+2b=6,可以找到两组适合方程的正整数解为和结论2:镶嵌平面时,在一个顶点周围围绕着2个正三角形和2个正六边形的内角或者围绕着4个正三角形和1个正六边形的内角可以拼成一个周角,所以同时用正三角形和正六边形两种正多边形组合可以进行平面镶嵌猜想3:是否可以同时用正三角形、正方形和正六边形三种正多边形组合进行平面镶嵌?验证3:在镶嵌平面时,设围绕某一点有m个
12、正三角形、n个正方形和c个正六边形的内角可以拼成一个周角根据题意,可得方程:60m+90n+120c=360,整理得:2m+3n+4c=12,可以找到惟一一组适合方程的正整数解为结论3:镶嵌平面时,在一个顶点周围围绕着1个正三角形、2个正方形和1个正六边形的内角可以拼成一个周角,所以同时用正三角形、正方形和正六边形三种正多边形组合可以进行平面镶嵌(说明:本题答案不惟一,符合要求即可)14【解析】(1)ABC与ADC互补,ABC+ADC=180A=90,C=360-90-180=90;(2)过点A作AEBC,垂足为E则线段AE把四边形ABCD分成ABE和四边形AECD两部分,把ABE以A点为旋转
13、中心,逆时针旋转90,则被分成的两部分重新拼成一个正方形过点A作AFBC交CD的延长线于F,ABC+ADC=180,又ADF+ADC=180, ABC=ADFAD=AB,AEC=AFD=90,ABEADFAE=AF四边形AECF是正方形;(3)解法1:连接BD,C=90,CD=6,BC=8,RtBCD中,BD=10又S四边形ABCD=49,SABD=49-24=25过点A作AMBD垂足为M,SABD=BDAM=25AM=5又BAD=90,ABMDAM=设BM=x,则MD=10-x,=解得x=5AB=5解法2:连接BD,A=90设AB=x,AD=y,则x2+y2=102,xy=25,xy=50由
14、,得:(x-y)2=0x=y2x2=100x=515【解析】证明:在ABC和CDA中,ABCCDA,AD=BC,AB=CD,四边形ABCD是平行四边形(2)解:BAC=90,BC=5cm,AB=3cm,由勾股定理得:AC=4cm,即AB、CD间的最短距离是4cm,AB=3cm,AE=AB,AE=1cm,BE=2cm,设经过ts时,BEP是等腰三角形,当P在BC上时,BP=EB=2cm,t=2时,BEP是等腰三角形;BP=PE,作PMAB于M,BM=ME=BE=1cmcosABC=,BP=cm,t=时,BEP是等腰三角形;BE=PE=2cm, 作ENBC于N,则BP=2BN,cosB=,=,BN
15、=cm,BP=,t=时,BEP是等腰三角形;当P在CD上不能得出等腰三角形,AB、CD间的最短距离是4cm,CAAB,CA=4cm,当P在AD上时,只能BE=EP=2cm,过P作PQBA于Q,平行四边形ABCD,ADBC,QAD=ABC,BAC=Q=90,QAPABC,PQ:AQ:AP=4:3:5,设PQ=4xcm,AQ=3xcm,在EPQ中,由勾股定理得:(3x+1)2+(4x)2=22,x=,AP=5x=cm,t=5+5+3-=,答:从运动开始经过2s或s或s或s时,BEP为等腰三角形16. 【解析】(1)=60,BC=10,sin=,即sin60=,解得CE=5;(2)存在k=3,使得E
16、FD=kAEF理由如下:连接CF并延长交BA的延长线于点G,F为AD的中点,AF=FD,在平行四边形ABCD中,ABCD, G=DCF,在AFG和CFD中,AFGDFC(AAS),CF=GF,AG=CD,CEAB,EF=GF(直角三角形斜边上的中线等于斜边的一半),AEF=G,AB=5,BC=10,点F是AD的中点,AG=5,AF=AD=BC=5,AG=AF,AFG=G,在EFG中,EFC=AEF+G=2AEF,又CFD=AFG(对顶角相等),CFD=AEF,EFD=EFC+CFD=2AEF+AEF=3AEF,因此,存在正整数k=3,使得EFD=3AEF;设BE=x,AG=CD=AB=5,EG=AE+AG=5-x+5=10-x,在RtBCE中,CE2=BC2-BE2=100-x2,在RtCEG中,CG2=EG2+CE2=(10-x)2+100-x2=200-20x,CF=GF(中已证),CF2=(CG)2=CG2=(200-20x)=50-5x,CE2-CF2=100-x2-50+5x=-x2+5x+50=-(x-)2+50+,当x=,即点E是AB的中点时,CE2-CF2取最大值,此时,EG=10-x=10-=,CE=,所以,tanDCF=tanG=