《循环伏安法定量测定氯化血红素-(1).doc》由会员分享,可在线阅读,更多相关《循环伏安法定量测定氯化血红素-(1).doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 . 循环伏安法定量测定氯化血红素一、实验目的 1.1. 掌握电化学工作站的基本使用方法。 1.2. 加深理解循环伏安法的测定原理。1.3. 学习运用循环伏安法进行实际样品的分析测定。二、实验原理2.1. 电化学检测系统是电化学分析的基础,主要包括电化学工作站、电极和电解池。其中,电化学工作站是施加工作电压和采集电化学输出信号的电子设备,而电极是与电解质或电解质溶液接触的电子导体或半导体。电化学分析常采用三电极体系,即工作电极(W)、参比电极(R)和对电极(A)。工作电极是电极反应发生的场所,是最直接的分析检测器件;参比电极是一个已知电势的接近于理想不极化的电极,是测量工作电极电位的对比标准;
2、对电极则与工作电极组成回路,使工作电极上电流畅通。对电极一般采用面积较大的惰性材料制成,以降低对电极上的电流密度,使其在测量过程中基本不会被极化。图1 电化学检测系统:(A)电化学工作站和三电极体系;(B)电解池。2.2. 循环伏安法是电化学分析中最常用的实验技术,也是电化学表征的主要方法。循环伏安法以快速线型扫描的形式在电极上施加等腰三角形脉冲电压:电压从某设定起始电位Ei开始,沿某一方向变化,当扫描至某设定终点电位Ef后,再反向扫描回归至起始电位Ei;若Ei Ef,则在正向扫描过程中电极电位越来越负,当电位足够负时具有氧化还原活性的分子在电极表面发生还原,产生还原峰;而在逆向扫描过程中,还
3、原产物又会重新在电极表面氧化,产生氧化峰。在一定的电解质溶液组成和实验条件下,氧化还原峰电流与氧化还原组分的浓度成正比,可利用其进行定量分析。同时,根据所得到的循环伏安图中氧化峰和还原峰的对称性中还可以判断出电活性物质在电极表面反应的可逆程度;根据峰电流值与扫描速度的关系可以确认电活性物质在电极表面的电化学过程类型(扩散控制或吸附控制)。2.3. 氯化血红素(hemin,其分子式如图2所示)是铁卟啉一类配合物的总称,是高等动物血液、肌肉中的红色色素,在体内起运载和贮存O2 的作用,在呼吸链中发挥电子传递的功能。近年来氯化血红素作为一种生物铁被广泛应用在食品、医药以及生化制剂等多方面。例如,氯化
4、血红素作为缺铁性贫血的天然补品及药物原料, 能被人体很好的吸收且无毒副作用,因而具有良好的药用前景。由于氯化血红素在一定的条件下能够在电极表面发生氧化还原反应,因而可以使用循环伏安扫描的方法对氯化血红素进行定量测定。氯化血红素在电极表面的氧化还原机理如下:Hemin-Fe(III) + H+ + e Hemin-H-Fe(II)图2 氯化血红素分子式三、仪器与试剂 3.1. 仪器(1) CHI电化学工作站(2) 超声波清洗器(3) 三电极体系:热解石墨电极(工作电极)、饱和甘汞电极(参比电极)、铂电极(对电极)(4) 容量瓶、量筒、烧杯等3.2. 试剂(1) 氯化血红素(2) 氢氧化钠(3)
5、磷酸氢二钾(4) 磷酸二氢钾(5) 粒度为1.0微米的氧化铝粉末(6) 无水乙醇四、实验步骤4.1. 电极预处理一个全新的电极,电极的表面是粗糙的,不光滑的,并且还有许多杂质附着在上面。而电化学实验的灵敏度极高,任何杂质的存在都会影响实验结果,所以在实验前必须对电极表面进行处理。热解石墨电极按如下顺序进行预处理:(1) 依次在3000#和5000#金相砂纸上打磨;(2) 在丝绸上用粒度为1.0微米的氧化铝粉末抛光成镜面;(3) 反复冲洗后置于乙醇、纯水中分别超声3分钟。预处理完成后,将电极置于铁氰化钾溶液中进行循环伏安扫描,以确认电极打磨效果。具体实验参数为:扫描范围 0.05 0.4 V;扫
6、描速率100 mV/s,扫描段数2,灵敏度1e-4。若扫描得到的循环伏安图谱中峰间距小于0.13 V,则证明电极已打磨干净。4.2. 氯化血红素的定量测定(1)取6 mL 0.1 molL-1的磷酸盐(PBS)缓冲液置于小烧杯中作为电化学测定的电解质溶液(注意:每次电化学测定前应向电解质溶液中通10分钟以上高纯氮气,以除去氧气;在实验过程中需将氮气管保留在电解液上部5 cm处,维持氮气气氛)。(2)依次准确移取0.1 mL的氯化血红素标准品到电解质溶液中;每移取一次溶液后,搅拌溶液使混合均匀,随后使用CHI电化学工作站进行循环伏安扫描。具体实验参数为:扫描范围 -1.0 0.2 V;扫描速率1
7、00 mV/s,扫描段数2,灵敏度1e-4。每次扫描结束得出相应的循环伏安曲线后,以合适文件名保存测试结果,并列表记录各浓度下的还原峰电流和峰电位。表1 标准氯化血红素溶液的氧化峰电流C / mmolL-1I / mAE / V4.3. 循环伏安扫描速度和稳定性研究(1)在步骤4.2实验结束后的溶液中,改变扫描速度(建议依次取40, 80, 100, 120,160, 200 mV/s),进行循环伏安测定。以合适文件名保存测试结果,列表记录各扫速下的还原峰电流和峰电位。(2)在步骤4.3(1)实验结束后的溶液中,改变扫描半圈数(建议取30半圈),进行循环伏安测定。以合适文件名保存测试结果。五、
8、实验数据处理鼓励采用计算机处理数据。建议使用Excel或Origin软件绘图。5.1. 以所得到的某个典型循环伏安图为例,指出在什么电位区间内发生还原反应,什么电位区间发生氧化反应,写出有关半反应方程式,并标注氧化峰和还原峰。5.2. 以氯化血红素定量测定实验中得到的循环伏安图还原峰电流值为纵坐标,氯化血红素浓度为横坐标,作图求出线性回归方程和线性相关系数。5.3. 以扫描速度研究中得到的循环伏安图还原峰电流值为纵坐标,扫速或其平方根为横坐标,作图求出线性回归方程和线性相关系数,探讨氯化血红素在电极表面的电化学过程类型。六、问题与讨论1. 实验中氯化血红素在电极表面发生的氧化还原反应是否可逆?
9、依据是什么?2. 每次电化学测定前为何要向电解质溶液中通高纯氮气?若未进行该步骤,循环伏安测定结果会有什么变化?3. 本实验对于氯化血红素定量测定可能误差来源主要有哪些?附录: 电化学工作站的使用和设置4.2.1. 打开计算机,在指定文件夹“CV实验”中,建立两级子文件夹。建议以日期、姓名或学号来命名,如“D:CV实验20060323爱因斯坦”。4.2.2. 打开CHI电化学工作站。4.2.3. 打开CHI软件,鼠标点击运行Setup中的Hardware Test(如图2),检查仪器状态是否正常。约1分钟内弹出硬件测试结果。仪器正常时,所有的数值均接近于零但不全等于零,并显示OK。如显示failed,说明仪器有问题。图2. CHI电化学工作站 硬件测试.图3. CV参数输入.4.2.4. 运行Setup/Techniques,选择Cyclic Voltammetry。运行Setup/Parameters,弹出Cyclic VoltammetryParameters窗口,参考如下窗口输入有关参数(图3):5 / 5