《轴承振动特征分析.ppt》由会员分享,可在线阅读,更多相关《轴承振动特征分析.ppt(70页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、q 滚动轴承故障机器振动特征分析(2)1滚动轴承故障 滚动轴承是机器中最精密的部件,公差是其余部件的十分之一。由于各种原因,只有10到20的轴承能达到它们的设计寿命2滚动轴承类型 深槽球轴承针轴承角接触球轴承圆柱滚子轴承球面滚子轴承圆锥滚子轴承3滚动轴承为什么会过早损坏?主要因素之一是过大的动载荷即振动。理论计算滚珠轴承寿命公式,表明为什么作用在轴承上的动载减少轴承的寿命:转速愈高,预期的寿命愈短。理论的轴承寿命随轴承承受的的负载的三次方变化。如果设计者只考虑轴承的静载和如皮带拉伸等其他部件静载,则轴承的理论计算寿命会大打折扣。4缩短滚动轴承寿命的因素例例:重重量量为为20002000磅磅(9
2、08(908公公斤斤)的的转转子子,转转速速为为60006000转转/分分,在在直直径径为为3 3英英尺尺(半半径径为为1818英英寸寸=457.2=457.2毫毫米米)处处的的转转子子上上存存在在一一个个1 1盎盎司司(28(283535克克)的的不不平平衡衡质质量量。此此不不平平衡衡质质量量产产生生的离心力计算:的离心力计算:5其它缩短滚动轴承寿命的因素转子不只承受不平衡,还承受不对中、松动、气蚀或其它故障引起的动载荷,轴承的实际寿命可能还要短。其它因素:润滑不当,错误润滑剂,灰尘和其它污染物污染,储存不当,潮气,运输或使用时嗑碰、刮伤,错用轴承型号,轴承安装不当等。最重要的对策是监测滚动
3、轴承的状态,早期发现轴承故障,跟踪其发展趋势,并知道何时需更换轴承;正确地采集轴承振动特征信号;正确地采集轴承振动特征信号;分析其振动特征信号,故障诊断;分析其振动特征信号,故障诊断;利用高频包络解调信号处理技术,更有效地监测出轴承故障。利用高频包络解调信号处理技术,更有效地监测出轴承故障。选择合适的监测参数如振动速度、冲击脉冲、解调谱等。选择合适的监测参数如振动速度、冲击脉冲、解调谱等。6轴承故障原因及其解决过负荷引起过早疲劳,(包括过紧配合,布氏硬度凹痕和预负荷)减少负荷或重新设计过热征兆是滚道,球和保持架变色,金色变为蓝色温度超过400F(204)使滚道和滚动体材料退火硬度降低导致轴承承
4、重降低和早期失效严重情况下引起变形,另外温升高会降低和破坏润滑性能7轴承故障原因及其解决布氏硬度凹痕当负荷超过滚道的弹性极限时产生滚道上的凹痕增加振动(噪声)任何静态过负荷和严重冲击产生布氏凹痕伪布式凹痕在每个滚珠位置产生的椭圆形磨损凹痕,光滑,有明显边界,周围有磨削表明严重的外部振动隔振和使用抗摩添加剂8轴承故障原因及其解决正常疲劳失效疲劳失效指滚道和滚动体上发生龟裂,并随之产生材料碎片剥落这种疲劳为逐渐发生,一旦开始则迅速扩展,并伴随明显的振动增加更换轴承,和设计有更长疲劳寿命的轴承9轴承故障原因及其解决反向载荷角接触轴承的设计只接受一个方向的轴向载荷当方向相反时,外圈的椭圆接触区域被削平
5、结果是应力增加,温度升高,并产生振动增大和轴承早期失效10轴承故障原因及其解决污染污染是轴承失效的主要原因之一污染的征兆是在滚道和滚动体表面有点痕,导致振动加大和磨损清洁环境,工具,规范操作。新轴承的储运。润滑油失效滚道和滚子的变色(蓝、棕)是润滑失效的征兆,随之产生滚道、滚子和保持架磨损,导致过热和严重故障。滚动轴承的正常运行取决于各部件间存在良好油膜失效常常由润滑不足和过热引起11轴承故障原因及其解决腐蚀其征兆是在滚道、滚子、保持架或其他位置出现红棕色区域原因是轴承接触腐蚀性流体和气体严重情况下,腐蚀引起轴承早期疲劳失效除掉腐蚀流体,尽可能使用整体密封轴承12轴承故障原因及其解决不对中征兆
6、是滚珠在滚道上产生的磨痕与滚道边缘不平行如果不对中超过0.001in/in,会产生轴承和轴承座异常温升,和保持架球磨损配合松动配合松动导致配合部件的相对运动,如果这个相对运动轻微但不间断,则产生磨损这种磨损产生颗粒,并氧化成特殊的棕色。这导致研磨和松动加大。如果松动增大到内圈或外圈的显著运动,安装表面(孔径,外径和侧面)将磨损和发热,引起噪声和晃动。13滚动轴承故障的振动特征p滚动轴承一旦产生故障,可能会产生四种类型频率的振动l随机的超声频率;l轴承零部件的自振频率;l轴承故障特征频率;l轴承故障的和频及差频。p随机的超声频率振动l滚动轴承初始故障时产生的振动,从滚动轴承安装在设备上直到它们刚
7、发生故障之前,发生的频率范围从约5000Hz到60000Hz超声频率范围。包括振动尖峰能量(SpikeEneey),高频加速度(HFD),冲击脉冲(ShockPules)及其他。通常,以总量值评定轴承的状态,其频谱数据信息更丰富。14滚动轴承振动尖峰能量(gSE)报警值。15p轴承零部件的自振频率安装在机器上的滚动轴承自振频率范围约为500到2000Hz之间。自振频率与转速无关,无论轴的转速高低它都处在一个相同的频率位置。p轴承故障特征频率滚动轴承故障特征频率就是轴承故障产生的振动频率。BPFO 外圈故障特征频率BPFI 内圈故障特征频率BSF 滚动体故障特征频率FTF 保持架故障特征频率滚动
8、轴承故障的振动特征161.轴承的故障频率与其他故障频率不同;2.轴承故障频率是转速频率的非整数倍;3.内外环故障频率的和频=“轴承滚动体通过频率”(滚动体个数RPM)4.轴承内环故障频率往往伴有1 X转速频率的边带 轴承故障特征频率的特点175.轴承外环故障频率的幅值高于轴承内环故障频率的幅值;6.轴承故障一般在发展到滚动体和保持架出现故障之前首先出现的是内环或外环故障频率;7.轴承保持架故障频率(FTF)通常不是以其基频出现;8.当滚动体本身出现故障时,往往会产生不仅滚动体故障频率(BSF),还有保持架故障频率(FTF);9.轴承保持架断裂时,可能出现滚动体旋转故障频率;10.一个以上滚动体
9、有故障时,将产生有故障的滚动体数目滚动体故障特征频率的频率。如果5个滚珠或滚柱上有故障,往往将出现5BSF的频率。11.轴承故障频率允许的振动幅值不能绝对限定。它不仅与具体机器、转速有关,还与轴承故障频率传递的通路有很大关系。指示轴承损坏的最明显的标志就是存在轴承故障频率的谐波频率,尤其是这些频率伴有1转速频率或轴承其它故障频率边带,应尽快更换该轴承。轴承故障特征频率的特点1812.评定的低速机器的轴承状态:评定尤其是低于100转分转速的机器轴承状态时,推荐采集时域波形和(FFT)频谱二者。当转速很低时,滚动体滚动通过轴承内外环上缺陷时发生的脉冲没有足够能量产生清楚的,可以检测出来的FFT谱中
10、的频率,但是在时域波形中仍然可能清楚的看出来。轴承故障特征频率的特点1913.振动传感器置于尽可能靠近轴承的承载区,尤其是轴承仅支承径向负载时。14.不合适的轴承负载和安装问题 若轴承负载不合适或安装不恰当,例如,安装新轴承时,如果轴承与轴承座过盈配合过紧,使轴承“咔入”轴承座中,导致轴承内部间隙发生变化,使滚动体强制被压向轴承的内外环。出现这种情况,轴承在起动时立即产生轴承外环和内环的故障频率。由于安装不当对轴承施加了过大负荷。虽然,可能尚未发生实际损坏,但是,如果检测不出这种故障问题并采取措施修正,则该轴承将在其预定寿命之前很早就损坏。15.轴承润滑不良产生的频率 特征是在900到1600
11、Hz范围内,有3或4个尖峰,尖峰之间的差频在80到130Hz。润滑良好的轴承可能也包括这些频率分量,然而,它们的幅值非常小,约为1.27mm/s或更小。当润滑不良时,幅值增大到 2.54到5.08mm/s轴承故障特征频率的特点20滚动轴承故障特征频率BPFO-Ball Pass Frequency Outer RaceBPFI-Ball Pass Frequency Inner RaceBSF-Ball Spin FrequencyFTF-Cage Frequency or Fundamental Train Frequency21滚动轴承故障频率计算(1)保持架故障频率:FTF=(1/2)N
12、oFTF=(1/2)No1+1+(d/Dd/D)Cos +Ni Cos +Ni 1-1-(d/Dd/D)Cos Cos 滚动体旋转故障频率:BSF=(1/2)(D/d)|No-Ni|1-(d/D)Cos BSF=(1/2)(D/d)|No-Ni|1-(d/D)Cos 外环故障频率:BPFO=(1/2)n|No-Ni|1-(d/D)CosBPFO=(1/2)n|No-Ni|1-(d/D)Cos 内环故障频率:BPFI=(1/2)n|Ni-No|1+(d/D)CosBPFI=(1/2)n|Ni-No|1+(d/D)Cos d d=滚动体直径;D D=滚动轴承平均直径(滚动体中心处直径);=径向方向
13、接触角;n n=滚动体数目;NoNo=轴承外环角速度;Ni=Ni=轴承内环角速度(=轴转速).注:注:1.1.滚动轴承没有滑动;滚动轴承没有滑动;2.2.滚动轴承几何尺寸没有变化;滚动轴承几何尺寸没有变化;3.3.轴承外环和轴承内环都旋转轴承外环和轴承内环都旋转.22滚动轴承故障频率计算(2)保持架故障频率:FTF=(N/2)1-(d/D)Cos 滚动体旋转故障频率:BSF=(N/2)(D/d)1-(d/D)Cos 外环故障频率:BPFO=(N/2)n1-(d/D)Cos 内环故障频率:BPFI=(N/2)n1+(d/D)Cos d d=滚动体直径;D D=滚动轴承平均直径(滚动体中心处直径)
14、;=径向方向接触角;n n=滚动体数目;N N=轴的转速。注:注:1.1.滚动轴承没有滑动;滚动轴承没有滑动;2.2.滚动轴承几何尺寸没有变化;滚动轴承几何尺寸没有变化;3.3.轴承外环固定不旋转轴承外环固定不旋转.23 滚动轴承故障频率计算(3)外环故障频率:BPFOr0.4Nn 内环故障频率:BPFIr0.6Nn 保持架故障频率:FTFr0.4N n=滚动体数目;N=轴的转速。注:注:1.1.滚动轴承没有滑动;滚动轴承没有滑动;2.2.滚动轴承几何尺寸没有变化;滚动轴承几何尺寸没有变化;3.3.轴承外环固定不旋转轴承外环固定不旋转.经验公式24滚动轴承故障频率计算(4)外环故障频率:BPF
15、OeN(0.5n-1.2)内环故障频率:BPFIeN(0.5n+1.2)滚动体故障频率:BSFeN(0.2n-1.2/n)保持架故障频率:FTFeN(0.5-1.2/n)n n=滚动体数目;N N=轴的转速。注:注:1.1.滚动轴承没有滑动;滚动轴承没有滑动;2.2.滚动轴承几何尺寸没有变化;滚动轴承几何尺寸没有变化;3.3.轴承外环固定不旋转轴承外环固定不旋转估算公式25滚动轴承故障频率计算例26典型的轴承故障发展过程润滑分析感官振动分析声发射检测27典型的轴承故障发展过程轴承故障劣化发展不是按线性规律,而是按指数规律变化 通常约百分之八十至九十的轴承寿命通常约百分之八十至九十的轴承寿命12
16、341X234阶段轴承剩余寿命的10-20%阶段轴承剩余寿命的5-10%阶段轴承剩余寿命的1-5%阶段一小时至轴承剩余寿命的1%灾难性破坏灾难性破坏累积的损伤时间28轴承故障发展的四个阶段I.初始阶段1.噪声正常2.温度正常3.可以用超声,振动尖峰能量,声发射测量出来,轴承外环有缺陷4.振动总量比较小,无离散的轴承故障频率尖峰5.剩余寿命大于10II.第二阶段1.噪声略增大2.温度正常3.超声,声发射,振动尖峰能量有大的增加,轴承外环有缺陷,4.振动总量略增大(振动加速度总量和振动速度总量)5.对数刻度频谱上可清楚看到轴承故障频率,线性刻度频谱上难得看到,噪声地平明显提高6.剩余寿命5 29轴
17、承故障发展的四个阶段III.第三阶段1.可听到噪声2.温度略升高3.非常高的超声,声发射,振动尖峰能量,轴承外环有故障4.振动加速度总量和振动速度总量有大的增加5.在线性刻度的频谱上清楚地看出轴承故障频率及其谐波和边带6.振动频谱噪声地平明显提高7.剩余寿命小于1IV第四阶段1.噪声的强度改变2.温度明显升高3.超声,声发射,振动尖峰能量迅速增大,随后逐渐减小,轴承外环处在损坏之前故障状态4.振动速度总量和振动位移总量明显增大,振动加速度总量减小5.较低的轴承故障频率占优势的振动尖峰,振动频谱中噪声地平非常高6.剩余寿命小于0.230Stage 1Stage 2Stage 3Stage 4no
18、 apparent change on typical velocity spectrumdefects harmonic frequencies appeardefects fundamental frequencies also appearand may exhibit sidebandsdefects harmonic frequencies develop multiplesidebands(haystack),fundamental freqs.growand also develop sidebandsdefects“fund.”frequency rangedefects“ha
19、rmonic”frequency range轴承故障四个阶段的频谱31包络(解调)频谱球/滚动体撞击缺陷产生“冲击波”.轴承“像一个鈡响”(共鸣).解调频谱信号处理过程32解调谱与常规频谱p振动解调可以在滚动轴承故障发展的初始阶段检测到故障信息,并且可跟踪轴承故障发展,在第二,三和第四阶段中以不同的信息反映轴承不同的故障状态。p同时采用振动速度或振动加速度检测常规振动频谱可以在滚动轴 承故障发展的第三阶段有效地检测到轴承的故障频率(内环故障BPFI,外环故障BPFO,滚动体故障BSF和保持架故障FTF)等。p振动解调和振动速度或振动加速度相结合可以有效地早期检测滚动轴承的故障。33解调谱/常规
20、谱结合用于轴承故障监测l解调频谱作为一个早期指示故障的测量参数l检查常规频谱和解调频谱:都没有故障频率,状态良好,作为基线继续监测只在解调频谱存在故障频率,早期故障指示,或需要润滑在两种频谱中都存在谱峰值,计划下一次维修更换轴承只在常规频谱中存在峰值,同时在解调频谱中噪声水平升高,立即更换34用振动频谱没有检测出用振动频谱没有检测出第一阶段轴承故障第一阶段轴承故障 用振动解调谱检测出用振动解调谱检测出第一阶段轴承故障第一阶段轴承故障35速度谱速度谱解调谱解调谱轴承外圈故障轴承外圈故障36p 轴承外圈有缺陷时,在解调频谱上可见轴承外圈缺陷频率BPFO及其高次谐波,如果外圈转动的轴承,可能出现其转
21、速频率的边频。轴承外圈故障的解调频谱特点轴承外圈缺陷轴承外圈缺陷解调谱37p 轴承内圈有缺陷时,在解调频谱上可见轴承内圈缺陷频率BPFI及其高次谐波,对内圈转动的轴承,可能出现其转速频率的边频。轴承内圈故障的解调频谱特点轴承内圈缺陷轴承内圈缺陷解调谱p 调制的原因:当内圈出现故障时,如果它位于加载区域时,产生的冲击会更加剧烈,从而产生更高的振幅。当内圈故障位置移出加载区后,其振幅又会降低,并在轴承顶部达到最小值。在这种情况下内圈的故障频率被(内圈的)旋转频率所调制,可以在频谱中看到1 X边频带出现。38轴承内圈故障的解调频谱举例39p 轴承滚动体有缺陷时,在解调频谱上可见轴承滚动体缺陷频率BS
22、F及其高次谐波,以及出现转速频率的边频;此外,由于滚动体对外圈的碰撞强于对内圈的碰撞,在解调谱上还会存在BSF的半谐波。轴承滚动体故障的解调频谱特点轴承滚动体缺陷轴承滚动体缺陷解调谱p 如果滚珠故障也会产生调制。当滚珠运转在载荷区会产生比运转在非载荷区更强烈的冲击。越接近载荷区,振幅越高。滚珠沿轴承以保持架频率FT滚动。该频率低于1 X,大约等于0.4 X。40p 轴承保持架有缺陷时,在解调频谱上可见轴承保持架缺陷频率FIF及其高次谐波;此外,由于轴承润滑不良也会引起保持架与滚动体的直接接触而出现保持架缺陷频率。轴承保持架故障的解调频谱特点轴承保持架缺陷轴承保持架缺陷解调谱41轴承失效的九个阶
23、段:第轴承失效的九个阶段:第I 阶段频率范围在20 KHz60 KHz之间或更高普通的频谱上不会出现任何指示峰值能量、HFD、冲击脉冲、SEE等超音频测量仪器 42轴承失效第轴承失效第II阶段阶段在共振(固有)频率处发出铃叫声。共振频率还作为载波频率调制轴承的故障频率。43轴承失效第轴承失效第III阶段阶段出现轴承故障频率 当轴承磨损进一步加剧,峰值将随着时间线性增加 44轴承失效第轴承失效第IV阶段阶段故障频率将产生谐波,这表明发生了一定程度的冲击 故障频率的谐波有时会比基频峰更早被发现 同时,时域波形中也会出现冲击脉冲显示 45 建议结合对数坐标进行分析,及时发现轴承故障的早期显示。使用加
24、速度传感器,不要进行积分。加速度能突出信号中的高频成分 46轴承失效第轴承失效第V阶段阶段出现更多轴承故障谐波,由于故障自身的性质,还会出现边频带 时域波形上的尖峰波将更加清晰和明显高频率轴承检测,如峰值能量和冲击脉冲趋势持续上升 能够从频谱中看到谐波,特别是边带后,轴承磨损就已经能够用肉眼观察到了 47轴承失效第轴承失效第VI阶段阶段1X幅值增大,并出现1X的谐波,这是由于磨损引起间隙增大的结果 48轴承失效第轴承失效第VII阶段阶段故障频率及其边频带变成峰丘状,经常被叫作“干草堆”。还能听到轴承发出的噪声。高频率的轴承测量值可能会逐渐减少。如果有下降趋势,不要以为是出现好转,而应该尽快去定
25、购用来更换的轴承了!49轴承失效第轴承失效第VIII阶段阶段频谱中的“干草堆”将继续扩大,谐波随着松动的增加而增大。高频率轴承测量值趋势可能会继续降低,重要的是整个噪声水平都在上升。能清晰的听到轴承发出的声音。预示着轴承即将报废。50轴承失效第轴承失效第IX阶段阶段这个阶段频谱会变平,机器已经不能运转了!51解调频谱与轴承故障当轴承破坏第七或第八阶段时,噪声水平将上升到接近波峰。这预示着轴承即将完全失效!严重故障时,峰值将高出噪声水平20 dB(100 X)损坏程度较低时波峰将非常小523#磨煤机电动机轴承磨煤机电动机轴承-外圈故障外圈故障53灰浆泵灰浆泵1-2-4轴承故障轴承故障灰浆泵灰浆泵
26、1-3-4轴承故障轴承故障549#磨煤机电动机轴承磨煤机电动机轴承-外圈故障外圈故障55#7磨煤机减速机轴承磨煤机减速机轴承-外圈故障外圈故障56#8凝结泵电动机轴承凝结泵电动机轴承-外圈故障外圈故障573626内圈故障频率送风机轴承送风机轴承-内圈故障内圈故障58底漆烤炉循环风机轴承底漆烤炉循环风机轴承-内圈故障内圈故障59彩涂线排碱泵轴承故障彩涂线排碱泵轴承故障60#7号磨煤机减速机轴承损坏号磨煤机减速机轴承损坏-内圈故障内圈故障61循环水泵轴承故障循环水泵轴承故障-内圈,滚珠内圈,滚珠62循环水泵电动机轴承故障循环水泵电动机轴承故障63#16凝结泵电动机轴承凝结泵电动机轴承-滚珠故障滚珠故障64凝结泵电动机轴承故障凝结泵电动机轴承故障65凝结泵电动机轴承故障凝结泵电动机轴承故障66排粉风机电机轴承排粉风机电机轴承-保持架故障保持架故障67送风机液力耦合器轴承故障送风机液力耦合器轴承故障68重重新新安安装装后后脱硫风机轴承安装问题脱硫风机轴承安装问题69吸风机电动机轴承故障吸风机电动机轴承故障70