《货车主减速器结构设计车辆综合项目工程.doc》由会员分享,可在线阅读,更多相关《货车主减速器结构设计车辆综合项目工程.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、题 目: 中型货车主减速器构造设计 一、设计题目中型货车主减速器构造设计二、设计参数驱动形式:4*2后驱最高车速:98km/h轴距:4700mm最大爬坡度:30%轮距:1900mm/1900mm汽车长宽高:7000mm/mm/2300mm整备质量:3650kg变速器传动比:5.06 4.016 3.09 1.71 1 4.8额定载质量:4830kg轮胎型号:8.25-16先后轴负荷:1900kg/1750kg 3060kg/5420kg离地间隙:300mm先后悬架长度:1100mm/1200mm 目录1 前言12 主减速器设计22.1发动机最大功率计算22.2发动机最大转矩计算22.3主减速比
2、拟定22.4主减速器计算载荷拟定32.5锥齿轮重要参数选取42.6主减速器锥齿轮轮齿强度计算73 差速器设计103.1差速器齿轮重要参数选取103.2差速器齿轮强度计算124齿轮材料选取及热解决135 结论14参照文献15 1 前言全世界范畴内汽车数量越来越多,汽车工业发展水平成为了衡量一种国家整体工业水平和综合经济实力标志之一,充分显示出其巨大经济效益和社会效益。随着科学技术不断进步,和高尖端技术在各个方面更为广泛应用,机械系统和机械产品对于传动装置特别是减速器等减速装置规定也在不断提高,那些能在小空间小体积下提供大传动比、高输出扭矩、低输出转速减速器将成为将来减速装置主流减速器是一种动力传
3、达机构,运用齿轮速度转换器,将发动机机回转数减速到所要回转数,并得到较大转矩机构。在当前用于传递动力与运动机构中,减速器应用范畴相称广泛。几乎在各式机械传动系统中都可以见到它踪迹,从交通工具船舶、汽车、机车,建筑用重型机具,机械工业所用加工机具及自动化生产设备,到寻常生活中常用家电,钟表等等.其应用从大动力传播工作,到小负荷,精准角度传播都可以见到减速器应用,且在工业应用上,减速器具备减速及增长转矩功能。因而广泛应用在速度与扭矩转换设备减速器和齿轮设计与制造技术发展,在一定限度上标志着一种国家工业水平,因而,开拓和发展减速器和齿轮技术在国内有辽阔前景 2 主减速器设计2.1发动机最大功率计算若
4、给出了预期最高车速,选取汽车发动机功率应大体等于,但不不大于以最高车速行驶时行驶阻力之和,即 (2-1) A为迎风面积。;空气阻力系数 货车选为0.8;对于载货汽车可取0.015-0.020,这里取0.019;算Pemax=81.6kw货车柴油机达到最大功率时发动机转速范畴是1800r/min-2600r/min在此选取np=2600r/min存在不同种类,不能用同一机理去解释不同矿震成因和现象。更不能用单一办法或办法去预测和防治矿震。因而要对矿震进行分类,并且浮现了各种分类办法2.2发动机最大转矩计算 (2-2)为转矩适应性系数,普通在1.1-1.3之间选用,此处取1.1。 =3292.3主
5、减速比拟定对于具备很大功率轿车、客车、长途公共汽车,值应按下式来拟定 (2-3)车轮滚动半径,在此选用轮胎型号为8.25-16,滚动半径为 0.407m;最大功率时发动机转速,在此取2600r/min;汽车最高车速,在此为98Km/min;变速器最高挡传动比,为1;对于其她汽车来说,为了用稍微减少最高车速办法来得到足够功率储备,主减速比普通比求得要大10%25% 取=5.0892.4主减速器计算载荷拟定按发动机最大转矩和最低挡传动比拟定从动锥齿轮计算转矩Tce (2-4) 式3.2变矩系数,由于不采用液力变矩器,所觉得1;变速器一挡传动比,在此取5.06;主减速器传动比在此取5.089;分动器
6、传动比;由于不采用分动器,所觉得1;发动机输出最大转矩,在此取329;结合离合器而产生冲击载荷时超载系数,对于普通载货汽车取k0=1.0, k为1;该汽车驱动桥数目在此取1;传动系上传动某些传动效率,在此取0.96算得: Tce=8134.6Nm按驱动轮打滑转矩拟定从动锥齿轮计算转矩 (2-5)满载状态下,一种驱动桥上静载荷,该车为后轮驱动,故驱动桥静载荷即为后轴载荷。为53116N取1.2轮胎对路面附着系数,在此取=0.85;分别为所计算主减速器从动锥齿轮到驱动车轮之间传动效率和传动比,均取1. 算得:Tcs=22050Nm按汽车寻常行驶平均转矩拟定从动锥齿轮计算转矩 (2-6)Ft寻常行驶
7、时牵引力。取6246N算得:= 2542Nm由式3.2和式3.3求得计算转矩,是作用到从动锥齿轮上最大转矩,不同于用式3.4求得寻常行驶平均转矩。当计算锥齿轮最大应力时,计算转矩Tc应取前面两种较小值;当计算锥齿轮疲劳寿命时,TC取Tcf。积极锥齿轮计算转矩为 (2-7)式中,io为主减速比;g为主、从动锥齿轮间转动效率,对于双曲面齿轮副,当i06时,取85%,当i06时,取90%。这里结合已有数据,取90%。算得:当Tc=minTce,Tcs=8134.6时,=1776Nm当Tc=时,=555Nm2.5锥齿轮重要参数选取主减速器锥齿轮重要参数有主、从动锥齿轮齿数和、从动锥齿轮大端分度圆直径D
8、2和端面模数ms、主、从动锥齿轮齿面宽b1和b2、双曲面齿轮副偏移距E、中点螺旋角、法向压力角等。2.5.1主、从动锥齿轮齿数z1和z2因设计车辆为商用车,因此原则上z16又因主传动比为5.089z1=6, z2=6*5.089=30.534z1=7,z2 =7*5.089=35.623z1=8,z2 =8*5.089=40.712z1=9,z2 =9*5.089=45.901分析以上数据,当z1=9时,获得z2=45.901,取46,z1不是很大,且9与46没有公约数通过验证负荷规定。因而初选z1=9,z2 =46。2.5.2从动锥齿轮大端分度圆直径D2和端面模数ms对于单级主减速器,增大尺
9、寸D2会影响驱动桥壳离地间隙,减小D2又会影响跨置式积极齿轮前支承座安装空间和差速器安装。D2可依照经验公式初选,即 (2-8)直径系数,普通取13.016.0;Tc从动锥齿轮计算转矩,为Tce和Tcs中较小者取其值为3229.27Nm;由式3.10得: =(13.015.3)=(261.45321.78);初选D2=310,则齿轮端面模数ms=D2/z2=310/46=6.739同步ms还应满足 (2-9)为模数系数,取0.30.4.6.739,8.045,故满足设计规定。2.5.3主、从动齿轮齿面宽b1、b2选取对于从动锥齿轮齿面宽b2,推荐不不不大于其节锥距A20.3倍,即,并且应满足,
10、普通也推荐b2=0.155D2=0.155*310=48mm小齿轮齿面宽b1=1.148.05=52.8mm。2.5.4双曲面齿轮副偏移距对于总质量较大商用车E(0.10-0.12)D2,取E=0.1d2=31mm 且取E20%A2,E=31mm2.5.5中心螺旋角积极齿轮中点处螺旋角可按下式初选: =+ (2-10)算得=45.30,选用45度。 (2-11)得=9.97=35.03 初选35其平均螺旋角为()=402.5.6 螺旋方向普通来说,汽车主减速器小锥齿轮普通为左旋,而大齿轮为右旋。2.5.7法向压力角载货汽车普通选用22.5压力角,因此在这里初选22.5。2.5.8齿轮基本参数表
11、3-1双曲面齿轮重要参数序号项目名称数值1小齿轮齿数Z192大齿轮齿数Z2463大齿轮齿面宽F484小齿轮轴线偏移距E315大齿轮分度圆直径d23106刀盘名义半径rd152.47小齿轮节锥角r11252 218小齿轮中点螺旋角1459大齿轮中点螺旋角31455410大齿轮节锥角r276471811大齿轮节锥角顶点到小齿轮节锥轴线距离Z-0.0212大齿轮节锥距A0 159.3413大齿轮齿顶角2 0.90414大齿轮齿根角2 4.41415大齿轮齿顶高h21.86816大齿轮齿根高h210.48117径向间隙C1.36418大齿轮齿全高h12.34919大齿轮齿工作高hg10.98520大齿
12、轮面锥角r0277413321大齿轮根锥角rR272222422大齿轮外圆直径d02310.85423大齿轮外缘至小齿轮轴线距离X0234.59124大齿轮面锥顶点至小齿轮轴线距离Z0-0.68225大齿轮根锥顶点至小齿轮轴线距离Zr1.84026小齿轮面锥角r011711427小齿轮面锥顶点至大齿轮轴线距离G0-3.59228小齿轮外缘至大齿轮轴线距离BR151.80329小齿轮轮齿前缘至大齿轮轴线距离B1101.58430小齿轮外圆直径d0191.67131小齿轮根锥顶点至大齿轮轴线距离GR3.76732小齿轮根锥角rR111592333最小齿侧间隙容许值Bmin0.20034最大齿侧间隙
13、容许值Bmax0.2702.6主减速器锥齿轮轮齿强度计算2.6.1单位齿长上圆周力主减速器齿轮表面耐磨性,常惯用单位齿长圆周力来估算,即 Nmm (2-12)F作用在轮齿上圆周力。 从动齿轮齿面宽,在此取52.8mm。按发动机 最大转矩计算时 (2-13)D1为积极齿轮分度圆直径,D1值不容易直接拟定,但=60.651mm,计算时将D1代入计算,D1由于为最小值,如D1满足设计规定,则D1必然满足规定。当货车挂一档时,*10=1097.9N/mm当货车挂直接档时,*10=216.9N/mm按驱动轮打滑计算:(2-14)发现不满足许用应力值,但是,在当代汽车设计中,由于材料加工工艺等制造质量提高
14、,许用应力有时高出20%-25%。并且,对于驱动轮打滑这种极限工况,在当代汽车应用中,发动机不也许提高这样大转矩。因而此项值仅为极限工况下一种检查,在计算数值偏差不是很大状况下,可以以为满足设计规定。2.6.2轮齿弯曲强度锥齿轮齿根弯曲应力为 (2-15)KS为尺寸系数,它反映了材料性质不均匀性,与齿轮尺寸及热解决等因素关于,在这里kS=(6.739/25.4)0.25=0.72.km为齿轮分派系数取1.kV为质量系数当接触良好齿距及径向跳动精度高时,取1.b为齿轮吃面宽。D为齿轮大端分度圆直径。JW为齿轮轮齿弯曲应力综合系数。J(小齿轮)=0.3,J(大齿轮)=0.252.对于从动齿轮,当T
15、c=8314N*m时,当Tc=2542N*m时对于积极齿轮,当Tc(换算后)=1581N*m当Tc(换算后)=494N*m时2.6.3轮齿接触强度锥齿轮轮齿齿面接触应力为 (2-16)T为积极齿轮计算转矩;材料弹性系数,对于钢制齿轮副取232.6/mm.表面质量系数,取1.0;J计算接触应力综合系数它综合考虑了啮合齿面相对曲率半径、载荷作用位置、轮齿间载荷分派系数、有效尺宽及惯性系数因素影响,选用J=0.172。b为b1和b2中较小一种,取48mm。上述按minTCE,TcS计算最大接触应力不应超过2800MPa,按Tcf计算疲劳接触强度赚钱不应超过1750MPa。主从动齿轮齿面接触应力是相似
16、。对于积极齿轮,当Tc=1581N*m当Tc(换算后)=494N*m时由以上成果可知,所选各项参数满足设计规定。3 差速器设计3.1差速器齿轮重要参数选取3.1.1行星齿轮数行星齿轮数需依照承载状况来选取。普通状况下,轿车n=2,货车和越野车n=4.本次设计普通对称式圆锥行星差速器行星齿轮数取4。3.1.2行星齿轮球面半径Rb拟定行星齿轮球面半径Rb反映了差速器锥齿轮节锥距大小和承载能力,可依照经验公式来拟定: (3-1)式中:行星齿轮球面半径系数,对于有4个行星齿轮载货汽车取小值;差速器计算转矩,Td=minTce,Tcf=8134N*m代入上式,Rb=50.68mm行星齿轮节锥距A0为:A
17、0=(0.980.99)Rb=(49.6750.17)mm取A0=50mm3.1.3行星齿轮和半轴齿轮齿数选取为了使轮齿有较高强度,行星齿轮齿数Z1应取少些,但Z1普通不少于10。半轴齿轮齿数Z2在1425选用。大多数汽车半轴齿轮与行星齿轮齿数比Z2Z1在1520范畴内。模数m应不不大于2.初取Z1 =12,Z2=18,则Z2Z1=1.5,2Z2Z1为整数条件。3.1.4行星齿轮和半轴齿轮节锥角及模数行星齿轮和半轴齿轮节锥角分别为: (3-2)计算得:,锥齿轮大端端面模数m为: =4.62 取m为5mm行星齿轮节圆直径:d1=mz1=5*12=60mm半轴齿轮节圆直径:d2=mz2=5*18=
18、90mm3.1.5压力角当前,汽车差速器齿轮大都采用22.5压力角,齿高系数为0.8。最小齿数可减少到10,并且在小齿轮(行星齿轮)齿顶不变尖条件下,还可以由切向修正加大半轴齿轮齿厚,从而使行星齿轮与半轴齿轮趋于等强度。由于这种齿形最小齿数比压力角为20少,故可以用较大模数以提高轮齿强度。在此选22.5压力角。3.1.6行星齿轮轴直径d及其深度L拟定行星齿轮轴直径d(mm)为: (3-3)式中:差速器传递转矩,Nm;由上可知为8134Nm;行星齿轮数目;在此为4;l行星齿轮支承面中点至锥顶距离,l0.5d2,d2为半轴齿轮齿面宽中点处直径而d20.8d2;支承面许用挤压应力,在此取98 MPa
19、;算得d=29.55mm。行星齿轮在轴上支承长度L为: (3-4)表3-1 差速器半轴齿轮及行星齿轮参数表序 号项 目行星齿轮半轴齿轮1齿轮齿数z12182端面模数m553节圆直径d60904节锥距A050505节锥角r33.6956.316齿面宽F1515.77法向压力角25258齿顶高h5.0282.9729齿根高h”3.9125.96810径向间隙c0.9910.99111齿工作高hg8812齿全高h8.9918.99113齿根角4.4746.80714面锥角r038.16460.78415根锥角rR29.21649.50316外圆直径d0168.30793.2973.2差速器齿轮强度计
20、算轮齿弯曲应力()为: (3-5)式中:n行星齿轮数;J为综合系数,取0.225;b2半轴齿轮齿宽。d2半轴齿轮大端分度圆直径;T半轴齿轮计算转矩,T=0.6T0;ks、km、kv按主减速器齿轮强度计算关于数值选用。当时,;计算得: 因此,符合规定。4齿轮材料选取及热解决a.主减速器锥齿轮损坏形式重要有齿轮根部弯曲折断、齿面疲劳点蚀、磨损和擦伤等。汽车主减速器用弧齿准双曲面锥齿轮,当前都是用渗碳合金钢制造,在此,齿轮所采用钢为20CrMnTi。用渗碳合金钢制造齿轮,通过渗碳、淬火、回火后,轮齿表面硬度应达到5864HRC为改进新齿轮磨合,防止其在运营初期浮现初期磨损、擦伤、胶合和咬死,在热解决
21、及精加工后,作厚度为0.0050.020mm磷化解决或镀铜、镀锡解决。对齿面进行应力喷丸解决,这样可以提高齿轮寿命25%。还可以对齿轮进行渗硫解决,以提高耐磨性。b.差速器齿轮与主减速器齿轮同样,基本上都是用渗碳合金钢制造,本次设计齿轮所采用钢与主减速器齿轮相似,为20CrMnTi。由于差速器齿轮轮齿规定精度较低,因此精锻差速器齿轮工艺已被广泛应用。5 结论国内当前汽车工业较不发达,国内将来汽车工业发展前景辽阔,发展和改进汽车及其零部件制造技术是非常必要。本文依照中型货车承载能力等因素,综合考虑各个因素设计了主减速比不是很大单级主减速器。主减速器齿轮采用是准双曲面弧齿圆锥齿轮,而差速器采用是普
22、通锥齿轮本设计还存在局限性之处。一是由于准双曲面齿轮参数计算复杂,采用了C语言编程,本人掌握还不够纯熟;另一方面,实际影响因素也许考虑不够完善,也许会影响所设计主减速器实际使用。参照文献1 刘惟信.汽车设计M.北京:清华大学出版社.2 余志生.汽车理论M.北京:机械工业出版社.3 Journals.A Computation Method for Braking Torque of Eddy Current Retarder.-07-014 L. A. Zadeh. The concept of a linguistic variable and its application to approximate reasoning,Part J.Information Sciences,(8):199-202.5 陈作模.机械原理M.高等教诲出版社.6 孙志礼.机械设计M.东北大学出版社.7 陈家瑞.汽车构造M.第五版.北京:人民交通出版社.8 张炳力.汽车设计M.合肥.合肥工业大学出版社.9 纪名刚.机械设计M.第七版.高等教诲出版社.10李庆芬.机械专业英语M.哈尔滨工程大学出版社.