《人教课标高中数学必修四期末复习提要PPT市公开课一等奖百校联赛特等奖课件.pptx》由会员分享,可在线阅读,更多相关《人教课标高中数学必修四期末复习提要PPT市公开课一等奖百校联赛特等奖课件.pptx(45页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、点此播放教学视频点此播放教学视频1第1页点此播放教学视频点此播放教学视频2第2页1 1、角概念推广角概念推广x正角正角负角负角oy终边终边零角零角一、角相关概念一、角相关概念2 2、角度与弧度互化角度与弧度互化3.终边相同角;终边相同角;3第3页练习:练习:2.分别写出满足以下条件角集合分别写出满足以下条件角集合(1)终边在)终边在y轴上角集合轴上角集合(2)终边在象限角平分线上角集合)终边在象限角平分线上角集合4第4页3 3、角终边落在、角终边落在“射线上射线上”、“直线上直线上”及及“相互垂相互垂直两条直线上直两条直线上”普通表示式普通表示式点此播放教学视频点此播放教学视频5第5页4.写出
2、终边在各图中阴影部分角集合写出终边在各图中阴影部分角集合6第6页4.弧度制弧度制:(1)1弧度角:弧度角:长度等于半径弧所正确圆心角长度等于半径弧所正确圆心角.(2)弧长公式:弧长公式:(3)扇形面积公式:扇形面积公式:7第7页已知一个扇形周长是已知一个扇形周长是4 4cmcm,面积为面积为1 1cmcm2 2,则这个扇形圆心角弧度数为则这个扇形圆心角弧度数为_练习练习8第8页弧弧度度 360O270O180O150O135O120O90O60O45O30O0O9第9页5.任意角三角函数任意角三角函数(1)定义定义:(2)三角函数值符号:三角函数值符号:OyxOyxOyx当点当点P在单位圆上时
3、,在单位圆上时,r=1xyoP(x,y)r10第10页6.同角三角函数基本关系式同角三角函数基本关系式(1)平方关系:平方关系:(2)商关系:商关系:练习已知练习已知tan=tan=,求,求sin.cossin.cos 点此播放教学视频点此播放教学视频11第11页练习练习12第12页公式二:公式二:公式三:公式三:公式四:公式四:公式一公式一(kZ)诱导公式诱导公式记忆方法记忆方法:奇奇变变偶偶不变,符号看象限不变,符号看象限13第13页公式五:公式五:公式六:公式六:公式七:公式七:公式八:公式八:诱导公式诱导公式记忆方法记忆方法:奇奇变变偶偶不变,符号看象限不变,符号看象限14第14页利用
4、诱导公式把任意角三角函数转化为利用诱导公式把任意角三角函数转化为锐角三角函数锐角三角函数,普通按下面步骤进行普通按下面步骤进行:任意负角任意负角三角函数三角函数任意正角任意正角三角函数三角函数02角角三角函数三角函数锐角三角锐角三角函数函数用公式一用公式一或公式三或公式三用公式一用公式一用公式二或用公式二或四或五或六四或五或六可概括为:“负化正,大化小,化到锐角为终了”15第15页1,求值:练习练习点此播放教学视频点此播放教学视频16第16页-11-1最高点:最高点:最低点:最低点:与与x轴交点:轴交点:作图时作图时五个关五个关键点键点17第17页-11-1最高点:最高点:最低点:最低点:与与
5、x轴交点:轴交点:作图时作图时五个关五个关键点键点18第18页全部点全部点向左向左(0)或或向右向右(1)或或伸长伸长(0 1)或或缩短缩短(0 A1(伸长伸长0 1(缩短缩短0A0(向右向右 1(伸长伸长0 1(缩短缩短0A0(向右向右 0)平移平移|/个单位个单位21第21页总结总结:利用利用 ,求得,求得22第22页图图像像定定义义域域值值域域最最值值递递增区增区间间递递减区减区间间奇偶性奇偶性周期周期对对称称轴轴对对称中心称中心1-11-1xyO时,时,时,时,时,时,时,时,奇函数奇函数偶函数偶函数T=2T=2奇函数奇函数T=2T=2T=T=23第23页求函数求函数 单调递增区间单调
6、递增区间:增增增增增增减减24第24页练习练习25第25页三角函数常规求值域问题三角函数常规求值域问题26第26页点此播放教学视频点此播放教学视频27第27页向量概念向量概念:向量表示方法:向量表示方法:现有现有大小大小又有又有方向方向量叫向量量叫向量(1 1)几何表示法:)几何表示法:(2 2)代数表示法:)代数表示法:或或向量长度向量长度(或模或模):A(A(起点)起点)B(B(终点)终点)用用有向线段有向线段表示表示点此播放教学视频点此播放教学视频28第28页平行向量定义:平行向量定义:长度(模)为长度(模)为1 1个单位长度个单位长度向量向量长度(模)为长度(模)为0 0向量,记作向量
7、,记作 方向相同或相反方向相同或相反非零向量非零向量要求:零向量与任一向量平行要求:零向量与任一向量平行单位向量概念:单位向量概念:零向量概念:零向量概念:29第29页相等向量定义:相等向量定义:共线向量与平行向量关系:共线向量与平行向量关系:长度相等长度相等且且方向相同方向相同向量叫做相等向量向量叫做相等向量任一组平行向量都可移到同一条直线上任一组平行向量都可移到同一条直线上 所以所以平行向量也叫共线向量平行向量也叫共线向量30第30页1.1.向量加法三角形法则向量加法三角形法则:特点特点:首尾相接首尾相接特点特点:共起点共起点BA2.2.向量加法平行四边形法则向量加法平行四边形法则:3.3
8、.向量减法三角形法则向量减法三角形法则:O特点:特点:共起点,连终点,方向指向被减数共起点,连终点,方向指向被减数31第31页32第32页共线向量基本定理:共线向量基本定理:向量向量 与非零向量与非零向量 共线共线当且仅当当且仅当有唯一一个实数有唯一一个实数 ,使得,使得(2)证实三点共线问题证实三点共线问题:定理定理应用应用:(1)相关向量共线问题相关向量共线问题:(3)证实两直线平行问题证实两直线平行问题:33第33页平面向量基本定理平面向量基本定理:假如假如 是同一平面内两个是同一平面内两个不共线不共线向向量,那么对于这一平面内任一向量量,那么对于这一平面内任一向量 有且只有有且只有一对
9、实数一对实数 ,使使34第34页向量夹角向量夹角:两个非零向量两个非零向量 和和 ,作作 ,,则则叫做向量叫做向量 和和 夹角夹角夹角范围:夹角范围:与与 反向反向OAB 与与 同向同向OAB记作记作与与 垂直,垂直,OAB注意注意:两向量必须两向量必须是是同起点同起点OAB35第35页坐标坐标(x,y)一一对应一一对应 向量向量 一个向量坐标等于表示此向量有向一个向量坐标等于表示此向量有向线段线段终点坐标终点坐标减去减去起点坐标起点坐标.O OA AB BP P主要主要结论结论36第36页OABab,过点,过点B作作垂直于直线垂直于直线OA,垂足为,垂足为 ,则,则|b|cos|b|cos叫向量叫向量 b 在在 a 方向上投影方向上投影平面向量数量积几何意义是平面向量数量积几何意义是:a 长度长度|a|与与 b 在在 a 方向方向 上投影上投影|b|cos 乘积乘积平面向量数量积平面向量数量积37第37页38第38页(1)垂直垂直:(2)平行平行:39第39页解解:设所求向量为设所求向量为(x,y),则则已知已知 =(4,3),求与求与 垂直单位向量垂直单位向量 .40第40页B B 练习练习C C41第41页D D1 15.5.6.6.m=-2m=-2 练习练习42第42页7.7.A A8.8.练习练习43第43页44第44页 45第45页