《专题10 概率统计(解析版).doc》由会员分享,可在线阅读,更多相关《专题10 概率统计(解析版).doc(45页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、专题10 概率统计古典概率、离散型随机变量的分布列、均值与方差是高考的热点题型,去年竟有解答题作为压轴题,常与排列、组合、概率等知识综合命题以实际问题为背景考查离散型随机变量的均值与方差在实际问题中的应用,注重与数列、不等式、函数、导数等知识的综合考查,是高考的主要命题方向预测2021年会有一大一小或一大二小.客观题较易.主观题有三种可能,一是通过一题考查统计案例及概率(文理兼顾,偏重理科),难度控制在中等;二是只考查统计案例问题(文理一视同仁),难度中等;三是同去年一样,作为压轴题(偏重理科).考查考生分析问题、解决问题的能力以及数学的应用意识.一、单选题1(2020山东高三模拟)1777年
2、,法国科学家蒲丰在宴请客人时,在地上铺了一张白纸,上面画着一条条等距离的平行线,而他给每个客人发许多等质量的,长度等于相邻两平行线距离的一半的针,让他们随意投放.事后,蒲丰对针落地的位置进行统计,发现共投针2212枚,与直线相交的有704枚.根据这次统计数据,若客人随意向这张白纸上投放一根这样的针,则针落地后与直线相交的概率约为( )ABCD【答案】D【解析】.故选:D.2(2020届山东省高考模拟)九章算术衰分中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱.欲以钱数多少衰出之,问各几何?”翻译为“今有甲持钱,乙持钱,丙持钱,甲、乙、丙三个人一起出关
3、,关税共计钱,要按个人带钱多少的比例交税,问三人各应付多少税?”则下列说法中错误的是( )A甲付的税钱最多B乙、丙两人付的税钱超过甲C乙应出的税钱约为D丙付的税钱最少【答案】B【解析】甲付的税钱最多、丙付的税钱最少,可知正确:乙、丙两人付的税钱占总税钱的不超过甲。可知错误:乙应出的税钱为.可知正确.故选:B3(20202020届山东省烟台市高三模拟)甲、乙两名学生的六次数学测验成绩(百分制)的茎叶图如图所示.甲同学成绩的中位数大于乙同学成绩的中位数;甲同学的平均分比乙同学的平均分高;甲同学的平均分比乙同学的平均分低;甲同学成绩的方差小于乙同学成绩的方差.以上说法正确的是( )ABCD【答案】A
4、【解析】由茎叶图可得甲同学成绩的中位数为,乙同学成绩的中位数为,故错误;,则,故错误,正确;显然甲同学的成绩更集中,即波动性更小,所以方差更小,故正确,故选:A4(2020届山东省济宁市高三3月月考)甲,乙,丙三人报考志愿,有三所高校可供选择,每人限报一所,则每所一学校都有人报考的概率为( )ABCD【答案】D【解析】由题意,每人报考一所学校,不同的选法总数是(种)如果每一所学校都有人报考,不同的选法总数是(种)所以如果每一所学校都有人报考的概率为故选:D5(2020届山东省济宁市高三3月月考)下列说法正确的是( )A回归直线至少经过其样本数据中的一个点B从独立性检验可知有99%的把握认为吃地
5、沟油与患胃肠癌有关系时,我们就说如果某人吃地沟油,那么他有99%可能患胃肠癌C在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高D将一组数据的每一个数据都加上或减去同一个常数后,其方差也要加上或减去这个常数【答案】C【解析】回归直线可以不经过其样本数据中的一个点,则A错误;从独立性检验可知有99%的把握认为吃地沟油与患胃肠癌有关系时,我们就说如果某人吃地沟油,那么他有99%可能患胃肠癌,则B错误;在残差图中,残差点分布的带状区域的宽度越窄,表示数据的残差越小,其模型拟合的精度越高,即C正确;将一组数据的每一个数据都加上或减去同一个常数后,其平均数也加上或减去同一个常数,则其方差
6、不变,故D错误,故选:C6(2020届山东省潍坊市高三模拟一)2020年2月8日,在韩国首尔举行的四大洲花样滑冰锦标赛双人自由滑比赛中,中国组合隋文静/韩聪以总分217.51分拿下四大洲赛冠军,这也是他们第六次获得四大洲冠军.中国另一对组合彭程/金杨以213.29分摘得银牌.颁奖仪式上,国歌奏响!五星红旗升起!团结一心!中国加油!花样滑冰锦标赛有9位评委进行评分,首先这9位评委给出某对选手的原始分数,评定该对选手的成绩时从9个原始成绩中去掉一个最高分、一个最低分,得到7个有效评分,7个有效评分与9个原始评分相比,不变的数字特征是( )A中位数B平均数C方差D极差【答案】A【解析】A去掉最高分、
7、最低分后,中位数仍旧是处于中间位置(从小到大排列)的那个数,不发生改变;B去掉最高分、最低分后,平均数是否发生改变与去掉的分数有关,不能确定是否变化;C去掉最高分、最低分后,方差的确定和平均数、数据个数有关,因此方差也不确定;D去掉最高分、最低分后,极差可能发生改变,亦可能不改变.故选:A.7(2020届山东省菏泽一中高三2月月考)“总把新桃换旧符”(王安石)、“灯前小草写桃符”(陆游),春节是中华民族的传统节日,在宋代人们用写“桃符”的方式来祈福避祸,而现代人们通过贴“福”字、贴春联、挂灯笼等方式来表达对新年的美好祝愿,某商家在春节前开展商品促销活动,顾客凡购物金额满50元,则可以从“福”字
8、、春联和灯笼这三类礼品中任意免费领取一件,若有4名顾客都领取一件礼品,则他们中有且仅有2人领取的礼品种类相同的概率是( )ABCD【答案】B【解析】从“福”字、春联和灯笼这三类礼品中任意免费领取一件,有4名顾客都领取一件礼品,基本事件总数n3481,他们中有且仅有2人领取的礼品种类相同包含的基本事件个数m36,则他们中有且仅有2人领取的礼品种类相同的概率是p故选:B8(2020届山东省潍坊市高三模拟二)2018年辽宁省正式实施高考改革.新高考模式下,学生将根据自己的兴趣、爱好、学科特长和高校提供的“选考科目要求”进行选课.这样学生既能尊重自己爱好、特长做好生涯规划,又能发挥学科优势,进而在高考
9、中获得更好的成绩和实现自己的理想.考改实施后,学生将在高二年级将面临着的选课模式,其中“3”是指语、数、外三科必学内容,“1”是指在物理和历史中选择一科学习,“2”是指在化学、生物、地理、政治四科中任选两科学习.某校为了更好的了解学生对“1”的选课情况,学校抽取了部分学生对选课意愿进行调查,依据调查结果制作出如下两个等高堆积条形图:根据这两幅图中的信息,下列哪个统计结论是不正确的( )A样本中的女生数量多于男生数量B样本中有学物理意愿的学生数量多于有学历史意愿的学生数量C样本中的男生偏爱物理D样本中的女生偏爱历史【答案】D【解析】由图1知,样本中的女生数量对于男生数量,样本中有学物理意愿的学生
10、数量多于有学历史意愿的学生数量,样本中的男生偏爱物理,女生也偏爱物理.故选:D.9(2020届山东济宁市兖州区高三网络模拟考)即空气质量指数,越小,表明空气质量越好,当不大于时称空气质量为“优良”.如图是某市3月1日到12日的统计数据.则下列叙述正确的是( )A这天的的中位数是B天中超过天空气质量为“优良”C从3月4日到9日,空气质量越来越好D这天的的平均值为【答案】C【解析】这12天的AQI指数值的中位数是 ,故A不正确;这12天中,空气质量为“优良”的有95,85,77,67,72,92共6天,故B不正确;从4日到9日,空气质量越来越好,故C正确;这12天的指数值的平均值为110,故D不正
11、确.故选 C10(2020届山东省泰安市肥城市一模)2018年辽宁省正式实施高考改革.新高考模式下,学生将根据自己的兴趣、爱好、学科特长和高校提供的“选考科目要求”进行选课.这样学生既能尊重自己爱好、特长做好生涯规划,又能发挥学科优势,进而在高考中获得更好的成绩和实现自己的理想.考改实施后,学生将在高二年级将面临着的选课模式,其中“3”是指语、数、外三科必学内容,“1”是指在物理和历史中选择一科学习,“2”是指在化学、生物、地理、政治四科中任选两科学习.某校为了更好的了解学生对“1”的选课情况,学校抽取了部分学生对选课意愿进行调查,依据调查结果制作出如下两个等高堆积条形图:根据这两幅图中的信息
12、,下列哪个统计结论是不正确的( )A样本中的女生数量多于男生数量B样本中有学物理意愿的学生数量多于有学历史意愿的学生数量C样本中的男生偏爱物理D样本中的女生偏爱历史【答案】D【解析】由图1知,样本中的女生数量对于男生数量,样本中有学物理意愿的学生数量多于有学历史意愿的学生数量,样本中的男生偏爱物理,女生也偏爱物理.故选:D.11(2020届山东省济宁市第一中学高三一轮检测)某次考试,班主任从全班同学中随机抽取一个容量为8的样本,他们的数学物理分数对应如下表:学生编号12345678数学分数6065707580859095物理分数7277808488909395绘出散点图如下:根据以上信息,判断
13、下列结论:根据此散点图,可以判断数学成绩与物理成绩具有线性相关关系;根据此散点图,可以判断数学成绩与物理成绩具有一次函数关系;甲同学数学考了80分,那么,他的物理成绩一定比数学只考了60分的乙同学的物理成绩要高.其中正确的个数为( ).A0B3C2D1【答案】D【解析】对于,根据此散点图知,各点都分布在一条直线附近,可以判断数学成绩与物理成绩具有较强的线性相关关系,正确;对于,根据此散点图,可以判断数学成绩与物理成绩具有较强的线性相关关系,不是一次函数关系,错误;对于,甲同学数学考了80分,他的物理成绩可能比数学只考了60分的乙同学的物理成绩要高,所以错误综上,正确的命题是,只有1个故选:D1
14、2(2020届山东济宁市兖州区高三网络模拟考)易经是中国传统文化中的精髓,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(表示一根阳线,表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有三根阳线和三根阴线的概率为( )ABCD【答案】D【解析】从八卦中任取两卦,基本事件有种,其中这两卦的六根线中恰有三根阳线和三根阴线,基本事件共有10中,这两卦的六根线中恰有三根阳线和三根阴线的概率为p故选:D13(2020山东曲阜一中高三3月月考)下列说法正确的是( )A回归直线至少经过其样本数据中的一个点B从独立性检验可知有99%的把握认为吃地沟油与患胃肠癌有关系时,我们就
15、说如果某人吃地沟油,那么他有99%可能患胃肠癌C在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高D将一组数据的每一个数据都加上或减去同一个常数后,其方差也要加上或减去这个常数【答案】C【解析】回归直线可以不经过其样本数据中的一个点,则A错误;从独立性检验可知有99%的把握认为吃地沟油与患胃肠癌有关系时,我们就说如果某人吃地沟油,那么他有99%可能患胃肠癌,则B错误;在残差图中,残差点分布的带状区域的宽度越窄,表示数据的残差越小,其模型拟合的精度越高,即C正确;将一组数据的每一个数据都加上或减去同一个常数后,其平均数也加上或减去同一个常数,则其方差不变,故D错误,故选:C14(
16、2020山东曲阜一中高三3月月考)甲,乙,丙三人报考志愿,有三所高校可供选择,每人限报一所,则每所一学校都有人报考的概率为( )ABCD【答案】D【解析】由题意,每人报考一所学校,不同的选法总数是(种)如果每一所学校都有人报考,不同的选法总数是(种)所以如果每一所学校都有人报考的概率为故选:D15(2020届山东省济宁市第一中学高三一轮检测)七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的如图是一个用七巧板拼成的正方形,现从该正方形中任取一点,则此点取自黑色部分的概率是ABCD【答
17、案】A【解析】设,则.,所求的概率为故选A.二、多选题16(2020届山东省高考模拟)下表是某电器销售公司2018年度各类电器营业收入占比和净利润占比统计表:空调类冰箱类小家电类其它类营业收入占比90.10%4.98%3.82%1.10%净利润占比95.80%0.48%3.82%0.86%则下列判断中正确的是()A该公司2018年度冰箱类电器销售亏损B该公司2018年度小家电类电器营业收入和净利润相同C该公司2018年度净利润主要由空调类电器销售提供D剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低【答案】ACD【解析】根据表中数据知,该公司2018年度冰箱类电器销
18、售净利润所占比为0.48,是亏损的,A正确;小家电类电器营业收入所占比和净利润所占比是相同的,但收入与净利润不一定相同,B错误;该公司2018年度净利润空调类电器销售所占比为95.80%,是主要利润来源,C正确;所以剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低,D正确故选:ACD17(2020届山东省潍坊市高三下学期开学考试)甲、乙、丙三人在政治、历史、地理、物理、化学、生物、技术7门学科中任选3门若同学甲必选物理,则下列说法正确的是( )A甲、乙、丙三人至少一人选化学与全选化学是对立事件B甲的不同的选法种数为15C已知乙同学选了物理,乙同学选技术的概率是D乙、
19、丙两名同学都选物理的概率是【答案】BD【解析】甲、乙、丙三人至少一人选化学与全不选化学是对立事件,故A错误;由于甲必选物理,故只需从剩下6门课中选两门即可,即种选法,故B正确;由于乙同学选了物理,乙同学选技术的概率是,故C错误;乙、丙两名同学各自选物理的概率均为,故乙、丙两名同学都选物理的概率是,故D正确;故选BD.18(2020山东滕州市第一中学高三3月模拟)(多选题)下列说法中,正确的命题是( )A已知随机变量服从正态分布,则B以模型去拟合一组数据时,为了求出回归方程,设,将其变换后得到线性方程,则,的值分别是和0.3C已知两个变量具有线性相关关系,其回归直线方程为,若,则D若样本数据,的
20、方差为2,则数据,的方差为16【答案】BC【解析】因为随机变量服从正态分布,所以,即A错;,从而,即B正确;过, ,即C正确;因为样本数据,的方差为2,所以数据,的方差为,即D错误;故选:BC19(2020届山东省泰安市肥城市一模)下表是某电器销售公司2018年度各类电器营业收入占比和净利润占比统计表:空调类冰箱类小家电类其它类营业收入占比90.10%4.98%3.82%1.10%净利润占比95.80%0.48%3.82%0.86%则下列判断中正确的是()A该公司2018年度冰箱类电器销售亏损B该公司2018年度小家电类电器营业收入和净利润相同C该公司2018年度净利润主要由空调类电器销售提供
21、D剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低【答案】ACD【解析】根据表中数据知,该公司2018年度冰箱类电器销售净利润所占比为0.48,是亏损的,A正确;小家电类电器营业收入所占比和净利润所占比是相同的,但收入与净利润不一定相同,B错误;该公司2018年度净利润空调类电器销售所占比为95.80%,是主要利润来源,C正确;所以剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低,D正确故选:ACD20(2020山东高三模拟)下列命题中是真命题的是( )A“”是“”的充分不必要条件B命题“,都有”的否定是“,使得”C数据的平均数为6,则数
22、据的平均数是6D当时,方程组有无穷多解【答案】ABD【解析】选项,则有,但,则或,所以“”是“”的充分不必要条件,选项正确;选项,命题“,都有”的否定是“,使得”,所以选项正确;选项,数据的平均数为6,则数据的平均数是7,所以选项错误;选项,当时,方程组为,所以有无数个解,所以选项正确.故选:ABD.21(2020届山东省淄博市部分学校高三3月检测)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2017年1月至2019年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论正确的是( )A年接待游客量逐年增加B各年的月接待游客量高峰期大致在8月C
23、2017年1月至12月月接待游客量的中位数为30D各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳【答案】ABD【解析】由2017年1月至2019年12月期间月接待游客量的折线图得:在A中,年接待游客量虽然逐月波动,但总体上逐年增加,故A正确;在B中,各年的月接待游客量高峰期都在8月,故B正确;在C中,2017年1月至12月月接待游客量的中位数小于30,故C错误;在D中,各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳,故D正确.故选:ABD22(2020山东高三下学期开学)一组数据,的平均值为7,方差为4,记,的平均值为a,方差为b,则( )A
24、BCD【答案】BD【解析】设,数据,的平均值为7,方差为4,即,由离散型随机变量均值公式可得所以,因而,的平均值为;由离散型随机变量的方差公式可得所以,因而,的方差为,故选:BD.23(2020届山东济宁市兖州区高三网络模拟考)下列判断正确的是( )A命题,使得,则的否定:“,都有”B中,角成等差数列的充要条件是;C线性回归直线必经过点的中心点D若随机变量服从正态分布,则;【答案】BCD【解析】A.命题,使得,则的否定为:“,都有”,故错误;B.角成等差数列,故正确;C.线性回归直线必经过点的中心点,故正确;D.若随机变量服从正态分布,则,故正确.故选:BCD.24(2020届山东省六地市部分
25、学校高三3月线考)甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球先从甲罐中随机取出一球放入乙罐,分别以,和表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以表示由乙罐取出的球是红球的事件,则下列结论中正确的是( )ABC事件与事件相互独立D,是两两互斥的事件【答案】BD【解析】由题意,是两两互斥的事件,故B正确;,故A,C不正确;,是两两互斥的事件,故D正确.故选:BD25(2020届山东省济宁市第一中学高三二轮检测)“科技引领,布局未来”科技研发是企业发展的驱动力量.20072018年,某企业连续12年累计研发投入达4100亿元,我们将研发投入
26、与经营投入的比值记为研发投入占营收比,这12年间的研发投入(单位:十亿元)用图中的条形图表示,研发投入占营收比用图中的折线图表示.根据折线图和条形图,下列结论正确的有( )A2012年至2013年研发投入占营收比增量相比2017年至2018年研发投入占营收比增量大B2013年至2014年研发投入增量相比2015年至2016年研发投入增量小C该企业连续12年来研发投入逐年增加D该企业连续12年来研发投入占营收比逐年增加【答案】ABC【解析】对于选项A,2012年至2013年研发投入占营收比增量为,2017年至2018年研发投入占营收比增量为,所以该选项正确;对于选项B,2013年至2014年研发
27、投入增量为2,2015年至2016年研发投入增量为19,所以该选项正确;对于选项C,该企业连续12年来研发投入逐年增加,所以该选项是正确的;对于选项D,该企业连续12年来研发投入占营收比不是逐年增加,如2009年就比2008年的研发投入占营收比下降了.所以该选项是错误的.故选:ABC26(2020届山东省淄博市高三二模)某健身房为了解运动健身减肥的效果,调查了名肥胖者健身前(如直方图(1)所示)后(如直方图(2)所示)的体重(单位:)变化情况:对比数据,关于这名肥胖者,下面结论正确的是( )A他们健身后,体重在区间内的人数较健身前增加了人B他们健身后,体重原在区间内的人员一定无变化C他们健身后
28、,人的平均体重大约减少了D他们健身后,原来体重在区间内的肥胖者体重都有减少【答案】AD【解析】体重在区间内的肥胖者由健身前的人增加到健身后的人,增加了人,故A正确;他们健身后,体重在区间内的百分比没有变,但人员组成可能改变,故B错误;他们健身后,人的平均体重大约减少了,故C错误;因为图()中没有体重在区间内的人员,所以原来体重在区间内的肥胖者体重都有减少,故D正确.故选:AD.三、填空题27(2020届山东省济宁市第一中学高三二轮检测)为了解某高中学生的身高情况,现采用分层抽样的方法从三个年级中抽取一个容量为100的样本,其中高一年级抽取24人,高二年级抽取26人若高三年级共有学生600人,则
29、该校学生总人数为_【答案】1200【解析】由题意知高三年级抽取了人所以该校学生总人数为人故答案为1200.28(2020山东高三下学期开学)左手掷一粒骰子,右手掷一枚硬币,则事件“骰子向上为6点且硬币向上为正面”的概率为_【答案】【解析】骰子向上为6点的概率为;硬币向上为正面的概率为;由独立事件概率公式可知“骰子向上为6点且硬币向上为正面”的概率为,故答案为:.四、解答题29(2020山东高三模拟)新高考,取消文理科,实行“”,成绩由语文、数学、外语统一高考成绩和自主选考的3门普通高中学业水平考试等级性考试科目成绩构成.为了解各年龄层对新高考的了解情况,随机调查50人(把年龄在称为中青年,年龄
30、在称为中老年),并把调查结果制成下表:年龄(岁)频数515101055了解4126521(1)分别估计中青年和中老年对新高考了解的概率;(2)请根据上表完成下面列联表,是否有95%的把握判断对新高考的了解与年龄(中青年、中老年)有关?了解新高考不了解新高考总计中青年中老年总计附:.0.0500.0100.0013.8416.63510.828(3)若从年龄在的被调查者中随机选取3人进行调查,记选中的3人中了解新高考的人数为,求的分布列以及.【答案】(1);(2)见解析,有95%的把握判断了解新高考与年龄(中青年、中老年)有关联;(3)分布列见解析,.【解析】中老年对新高考了解的概率.(2)列联
31、表如图所示了解新高考不了解新高考总计中青年22830老年81220总计302050,所以有95%的把握判断了解新高考与年龄(中青年、中老年)有关联.(3)年龄在的被调查者共5人,其中了解新高考的有2人,则抽取的3人中了解新高考的人数可能取值为0,1,2,则;.所以的分布列为012.30(2020山东滕州市第一中学高三3月模拟)随着经济模式的改变,微商和电商已成为当今城乡一种新型的购销平台已知经销某种商品的电商在任何一个销售季度内,没售出1吨该商品可获利润0.5万元,未售出的商品,每1吨亏损0.3万元根据往年的销售经验,得到一个销售季度内市场需求量的频率分布直方图如图所示已知电商为下一个销售季度
32、筹备了130吨该商品,现以(单位:吨,)表示下一个销售季度的市场需求量,(单位:万元)表示该电商下一个销售季度内经销该商品获得的利润()视分布在各区间内的频率为相应的概率,求;()将表示为的函数,求出该函数表达式;()在频率分布直方图的市场需求量分组中,以各组的区间中点值(组中值)代表该组的各个值,并以市场需求量落入该区间的频率作为市场需求量取该组中值的概率(例如,则取的概率等于市场需求量落入的频率),求的分布列及数学期望【答案】();();().【解析】分析:()根据频率分布直方图和互斥事件的概率公式求解()结合题意用分段函数的形式表示与的关系()先确定的所有可能取值为45,53,61,65
33、,然后分别求出相应的概率,进而可得分布列,最后求出期望详解:()根据频率分布直方图及互斥事件的概率公式可得:()当时,当时,所以()由题意及()可得:当时,;当时,;当时,;当时,所以的分布列为:455361650.10.20.30.4万元31(2020届山东省济宁市第一中学高三一轮检测)某班级体育课进行一次篮球定点投篮测试,规定每人最多投3次,每次投篮的结果相互独立.在处每投进一球得3分,在处每投进一球得2分,否则得0分.将学生得分逐次累加并用表示,如果的值不低于3分就判定为通过测试,立即停止投篮,否则应继续投篮,直到投完三次为止.现有两种投篮方案:方案1:先在处投一球,以后都在处投;方案2
34、:都在处投篮.已知甲同学在处投篮的命中率为,在处投篮的命中率为.(1)若甲同学选择方案1,求他测试结束后所得总分的分布列和数学期望;(2)你认为甲同学选择哪种方案通过测试的可能性更大?说明理由.【答案】(1)分布列见解析,(2)方案2,理由见解析【解析】(1)设甲同学在处投中为事件,在处第次投中为事件,由已知,.的取值为0,2,3,4.则, , , 的分布列为:0234的数学期望为:.(2)甲同学选择方案1通过测试的概率为,选择方案2通过测试的概率为,则, ,,甲同学选择方案2通过测试的可能性更大.32(2020届山东省六地市部分学校高三3月线考)为提高城市居民生活幸福感,某城市公交公司大力确
35、保公交车的准点率,减少居民乘车候车时间为此,该公司对某站台乘客的候车时间进行统计乘客候车时间受公交车准点率、交通拥堵情况、节假日人流量增大等情况影响在公交车准点率正常、交通拥堵情况正常、非节假日的情况下,乘客候车时间随机变量满足正态分布在公交车准点率正常、交通拥堵情况正常、非节假日的情况下,调查了大量乘客的候车时间,经过统计得到如图频率分布直方图.(1)在直方图各组中,以该组区间的中点值代表该组中的各个值,试估计的值;(2)在统计学中,发生概率低于千分之三的事件叫小概率事件,一般认为,在正常情况下,一次试验中,小概率事件是不能发生的在交通拥堵情况正常、非节假日的某天,随机调查了该站的10名乘客
36、的候车时间,发现其中有3名乘客候车时间超过15分钟,试判断该天公交车准点率是否正常,说明理由.(参考数据:,)【答案】(1),(2)准点率正常,详见解析【解析】(1),(2),设3名乘客候车时间超过15分钟的事件为,准点率正常33(2020届山东省淄博市部分学校高三3月检测)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.()由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;()建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:,2.646.参考公式:相关系数 回归方程中斜率和截距的最小二乘估计
37、公式分别为: 【答案】()答案见解析;()答案见解析.【解析】()由折线图中数据和附注中参考数据得,.因为与的相关系数近似为0.99,说明与的线性相关相当高,从而可以用线性回归模型拟合与的关系.()由及()得,.所以,关于的回归方程为:.将2016年对应的代入回归方程得:.所以预测2016年我国生活垃圾无害化处理量将约1.82亿吨. 34(2020届山东省济宁市第一中学高三二轮检测)某社区消费者协会为了解本社区居民网购消费情况,随机抽取了100位居民作为样本,就最近一年来网购消费金额(单位:千元),网购次数和支付方式等进行了问卷调査.经统计这100位居民的网购消费金额均在区间内,按,分成6组,
38、其频率分布直方图如图所示.(1)估计该社区居民最近一年来网购消费金额的中位数;(2)将网购消费金额在20千元以上者称为“网购迷”,补全下面的列联表,并判断有多大把握认为“网购迷与性别有关系”;男女合计网购迷20非网购迷45合计100(3)调査显示,甲、乙两人每次网购采用的支付方式相互独立,两人网购时间与次数也互不. 影响.统计最近一年来两人网购的总次数与支付方式,所得数据如下表所示:网购总次数支付宝支付次数银行卡支付次数微信支付次数甲80401624乙90601812将频率视为概率,若甲、乙两人在下周内各自网购2次,记两人采用支付宝支付的次数之和为,求的数学期望.附:观测值公式:临界值表:0.
39、010.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828【答案】(1) 中位数估计为17.5千元. (2)见解析;(3) 【解析】(1)在直方图中,从左至右前3个小矩形的面积之和为, 后2个小矩形的面积之和为,所以中位数位于区间内.设直方图的面积平分线为,则,得,所以该社区居民网购消费金额的中位数估计为17.5千元.(2)由直方图知,网购消费金额在20千元以上的频数为,所以“网购迷”共有35人,由列联表知,其中女性有20人,则男性有15人.所以补全的列联表如下:男女合计网购迷152035非网购迷452065合计6040100因为,查表得
40、,所以有97.5%的把握认为“网购迷与性别有关系”.(3)由表知,甲,乙两人每次网购采用支付宝支付的概率分别为,.设甲,乙两人采用支付宝支付的次数分别为,据题意,.所以,.因为,则,所以的数学期望为.35(2020届山东省潍坊市高三下学期开学考试)某企业有甲、乙两套设备生产同一种产品,为了检测两套设备的生产质量情况,随机从两套设备生产的大量产品中各抽取了50件产品作为样本,检测一项质量指标值,若该项质量指标值落在内,则为合格品,否则为不合格品. 表1是甲套设备的样本的频数分布表,图1是乙套设备的样本的频率分布直方图.表1:甲套设备的样本的频数分布表质量指标值95,100)100,105)105
41、,110)110,115)115,120)120,125频数14192051图1:乙套设备的样本的频率分布直方图(1)填写下面列联表,并根据列联表判断是否有90%的把握认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关;甲套设备乙套设备合计合格品不合格品合计(2)根据表1和图1,对两套设备的优劣进行比较;(3)将频率视为概率. 若从甲套设备生产的大量产品中,随机抽取3件产品,记抽到的不合格品的个数为,求的期望.附:P(K2k0)0.150.100.0500.0250.010k02.0722.7063.8415.0246.635.【答案】(1)见解析;(2)见解析;(3)【解析】(1
42、)根据表1和图1得到列联表甲套设备乙套设备合计合格品484391不合格品279合计5050100将列联表中的数据代入公式计算得 ,有90%的把握认为产品的质量指标值与甲、乙两套设备的选择有关(2)根据表1和图1可知,甲套设备生产的合格品的概率约为,乙套设备生产的合格品的概率约为,甲套设备生产的产品的质量指标值主要集中在105,115)之间,乙套设备生产的产品的质量指标值与甲套设备相比较为分散.因此,可以认为甲套设备生产的合格品的概率更高,且质量指标值更稳定,从而甲套设备优于乙套设备.(3)由题知, .36(20202020届山东省淄博市高三二模)某芯片公司为制定下一年的研发投入计划,需了解年研
43、发资金投入量(单位:亿元)对年销售额(单位:亿元)的影响.该公司对历史数据进行对比分析,建立了两个函数模型:,其中均为常数,为自然对数的底数现该公司收集了近12年的年研发资金投入量和年销售额的数据,并对这些数据作了初步处理,得到了右侧的散点图及一些统计量的值令,经计算得如下数据:(1)设和的相关系数为,和的相关系数为,请从相关系数的角度,选择一个拟合程度更好的模型;(2)(i)根据(1)的选择及表中数据,建立关于的回归方程(系数精确到0.01);(ii)若下一年销售额需达到90亿元,预测下一年的研发资金投入量是多少亿元? 附:相关系数,回归直线中斜率和截距的最小二乘估计公式分别为:,; 参考数据:,【答案】(1)模型的拟合程度更好;(2)(i);(ii)亿元.【解析】(1),则,因此从相关系数的角度,模型的拟合程度更好 (2)(i)先建立关于的线性回归方程.由,得,即由于,所以关于的线性回归方程为, 所以,则(ii)下一年销售额需达到9