《天津九级数学知识点总结 .doc》由会员分享,可在线阅读,更多相关《天津九级数学知识点总结 .doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、一元二次方程知识点总结考点一、一元二次方程 1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。2、 一元二次方程的一般形式:,它的特征是:等式左边十一个关于未知数x的二次 多项式,等式右边是零,其中叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。考点二、一元二次方程的解法 1、直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如的一元二次方程。根据平方根的定义可知,是b的平方根,当时,当b0时,一元二次方程有2个不相等的实数根;II当=0时,一元二次方程有2个相同的实数根;I
2、II当0时,一元二次方程没有实数根。考点四、一元二次方程根与系数的关系 如果方程的两个实数根是,那么,。也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。考点五、一元二次方程的二次函数的关系大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。也就是该方程的解了一元
3、二次方程易错题一、选择题1、若关于x的一元二次方程(m-1)x2+5x+m2-3m+2=0有一个根为0,则m的值等于( ) A1 B. 2 C. 1或2 D. 0 2、巴中日报讯:今年我市小春粮油再获丰收,全市产量预计由前年的45万吨提升到50万吨,设从前年到今年我市的粮油产量年平均增长率为,则可列方程为( )A B CD3、已知是关于的一元二次方程的两实数根,则的值是( )ABCD4、已知a、b、c分别是三角形的三边,则(a + b)x2 + 2cx + (a + b)0的根的情况是( )A没有实数根B可能有且只有一个实数根C有两个相等的实数根D有两个不相等的实数根5、已知是方程的两根,且,
4、则的值等于 ( )A5 B.5 C.-9 D.96、已知方程有一个根是,则下列代数式的值恒为常数的是( )A B C D7、的估计正确的是 ( )ABCD8、关于的一元二次方程的两个实数根分别是,且,则的值是( )A1 B12 C13 D259、中江县2011年初中毕业生诊断考试)某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张表示留念,全班共送了2450张相片,如果全班有x名学生,根据题意,列出方程为( )A. B. C. D. 10、设是方程的两个实数根,则的值为( )A2006B2007C2008D2009 11、对于一元二次方程ax2+bx+c=0(a0),下列说法:
5、 若a+c=0,方程ax2+bx+c=0必有实数根; 若b+4ac0,则方程ax2+bx+c=0一定有实数根; 若a-b+c=0,则方程ax2+bx+c=0一定有两个不等实数根;若方程ax+bx+c=0有两个实数根,则方程cx+bx+a=0一定有两个实数根 其中正确的是( ) A B C D二、填空题1、若一元二次方程x(a+2)x+2a=0的两个实数根分别是3、b,则a+b= 3、方程(x1)(x + 2)= 2(x + 2)的根是 4、关于x的一元二次方程ax+bx+1=0(a0)有两个相等实根,求 的值为_ _5、在等腰ABC中,三边分别为a,b,c,其中a=5,若关于x的方程x+(b+
6、2)x+6-b=0有两个相等的实数根,则ABC的周长为_6、已知关于的一元二次方程x-6x-k=0(k为常数)设x,x为方程的两个实数根,且x +2x=14,则k的值为_ 7、已知m、n是方程x-2003x+2004=0的两根,则(n-2004n+2005)与(m-2004m+2005)的积是 . 人教版九年级数学下二次函数最全的中考知识点总结 相关概念及定义 二次函数的概念:一般地,形如(是常数,)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数,而可以为零二次函数的定义域是全体实数 二次函数的结构特征: 等号左边是函数,右边是关于自变量的二次式,的最高次数是2 是常数,是
7、二次项系数,是一次项系数,是常数项 二次函数各种形式之间的变换 二次函数用配方法可化成:的形式,其中. 二次函数由特殊到一般,可分为以下几种形式:;. 二次函数解析式的表示方法 一般式:(,为常数,); 顶点式:(,为常数,); 两根式:(,是抛物线与轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与轴有交点,即时,抛物线的解析式才可以用交点式表示二次函数解析式的这三种形式可以互化. 二次函数图象的画法 五点绘图法:利用配方法将二次函数化为顶点式,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一
8、般我们选取的五点为:顶点、与轴的交点、以及关于对称轴对称的点、与轴的交点,(若与轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点. 二次函数的性质的符号开口方向顶点坐标对称轴性质向上轴时,随的增大而增大;时,随的增大而减小;时,有最小值向下轴时,随的增大而减小;时,随的增大而增大;时,有最大值 二次函数的性质的符号开口方向顶点坐标对称轴性质向上轴时,随的增大而增大;时,随的增大而减小;时,有最小值向下轴时,随的增大而减小;时,随的增大而增大;时,有最大值 二次函数的性质:的符号开口方向顶点坐标对称轴性质向上X=h时,随的增大而增
9、大;时,随的增大而减小;时,有最小值向下X=h时,随的增大而减小;时,随的增大而增大;时,有最大值 二次函数的性质的符号开口方向顶点坐标对称轴性质向上X=h时,随的增大而增大;时,随的增大而减小;时,有最小值向下X=h时,随的增大而减小;时,随的增大而增大;时,有最大值 抛物线的三要素:开口方向、对称轴、顶点. 的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同. 对称轴:平行于轴(或重合)的直线记作.特别地,轴记作直线. 顶点坐标: 顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不
10、同. 抛物线中,与函数图像的关系 二次项系数二次函数中,作为二次项系数,显然 当时,抛物线开口向上,越大,开口越小,反之的值越小,开口越大; 当时,抛物线开口向下,越小,开口越小,反之的值越大,开口越大总结起来,决定了抛物线开口的大小和方向,的正负决定开口方向,的大小决定开口的大小 一次项系数 在二次项系数确定的前提下,决定了抛物线的对称轴 在的前提下,当时,即抛物线的对称轴在轴左侧;当时,即抛物线的对称轴就是轴;当时,即抛物线对称轴在轴的右侧 在的前提下,结论刚好与上述相反,即当时,即抛物线的对称轴在轴右侧;当时,即抛物线的对称轴就是轴;当时,即抛物线对称轴在轴的左侧总结起来,在确定的前提下
11、,决定了抛物线对称轴的位置总结: 常数项 当时,抛物线与轴的交点在轴上方,即抛物线与轴交点的纵坐标为正; 当时,抛物线与轴的交点为坐标原点,即抛物线与轴交点的纵坐标为; 当时,抛物线与轴的交点在轴下方,即抛物线与轴交点的纵坐标为负 总结起来,决定了抛物线与轴交点的位置 总之,只要都确定,那么这条抛物线就是唯一确定的 求抛物线的顶点、对称轴的方法 公式法:,顶点是,对称轴是直线. 配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(,),对称轴是直线. 运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.
12、 用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 用待定系数法求二次函数的解析式 一般式:.已知图像上三点或三对、的值,通常选择一般式. 顶点式:.已知图像的顶点或对称轴,通常选择顶点式. 交点式:已知图像与轴的交点坐标、,通常选用交点式:. 直线与抛物线的交点 轴与抛物线得交点为(0, ). 与轴平行的直线与抛物线有且只有一个交点(,). 抛物线与轴的交点:二次函数的图像与轴的两个交点的横坐标、,是对应一元二次方程的两个实数根.抛物线与轴的交点情况可以由对应的一元二次方程的根的判别式判定: 有两个交点抛物线与轴相交; 有一个交点(顶点在轴上)抛物线与轴相切; 没有交点抛物
13、线与轴相离. 平行于轴的直线与抛物线的交点 可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为,则横坐标是的两个实数根. 一次函数的图像与二次函数的图像的交点,由方程组 的解的数目来确定:方程组有两组不同的解时与有两个交点; 方程组只有一组解时与只有一个交点;方程组无解时与没有交点. 抛物线与轴两交点之间的距离:若抛物线与轴两交点为,由于、是方程的两个根,故 二次函数图象的对称:二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 关于轴对称 关于轴对称后,得到的解析式是; 关于轴对称后,得到的解析式是; 关于轴对称 关于轴对称后,得到的解析式是; 关于轴
14、对称后,得到的解析式是; 关于原点对称 关于原点对称后,得到的解析式是; 关于原点对称后,得到的解析式是; 关于顶点对称 关于顶点对称后,得到的解析式是;关于顶点对称后,得到的解析式是 关于点对称 关于点对称后,得到的解析式是 总结:根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此永远不变求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式 二次函数图象的平移 平移步骤: 将抛物线解析式转化成顶点式,确定其
15、顶点坐标; 保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下: 平移规律 在原有函数的基础上“值正右移,负左移;值正上移,负下移”概括成八个字“左加右减,上加下减” 根据条件确定二次函数表达式的几种基本思路。 三点式。1,已知抛物线y=ax2+bx+c 经过A(,0),B(,0),C(0,-3)三点,求抛物线的解析式。2,已知抛物线y=a(x-1)+4 , 经过点A(2,3),求抛物线的解析式。 顶点式。1,已知抛物线y=x2-2ax+a2+b 顶点为A(2,1),求抛物线的解析式。2,已知抛物线 y=4(x+a)2-2a 的顶点为(3,1),求抛物线的解析式。 交点式。1,已知抛物线
16、与 x 轴两个交点分别为(3,0),(5,0),求抛物线y=(x-a)(x-b)的解析式。2,已知抛物线线与 x 轴两个交点(4,0),(1,0)求抛物线y=a(x-2a)(x-b)的解析式。 定点式。1,在直角坐标系中,不论a 取何值,抛物线经过x 轴上一定点Q,直线经过点Q,求抛物线的解析式。2,抛物线y= x2 +(2m-1)x-2m与x轴的一定交点经过直线y=mx+m+4,求抛物线的解析式。3,抛物线y=ax2+ax-2过直线y=mx-2m+2上的定点A,求抛物线的解析式。 平移式。1, 把抛物线y= -2x2 向左平移2个单位长度,再向下平移1个单位长度,得到抛物线y=a( x-h)
17、2 +k,求此抛物线解析式。2, 抛物线向上平移,使抛物线经过点C(0,2),求抛物线的解析式. 距离式。1,抛物线y=ax2+4ax+1(a0)与x轴的两个交点间的距离为2,求抛物线的解析式。2,已知抛物线y=m x2+3mx-4m(m0)与 x轴交于A、B两点,与 轴交于C点,且AB=BC,求此抛物线的解析式。 对称轴式。1、抛物线y=x2-2x+(m2-4m+4)与x轴有两个交点,这两点间的距离等于抛物线顶点到y轴距离的2倍,求抛物线的解析式。2、 已知抛物线y=-x2+ax+4, 交x轴于A,B(点A在点B左边)两点,交 y轴于点C,且OB-OA=OC,求此抛物线的解析式。 对称式。1
18、, 平行四边形ABCD对角线AC在x轴上,且A(-10,0),AC=16,D(2,6)。AD交y 轴于E,将三角形ABC沿x 轴折叠,点B到B1的位置,求经过A,B,E三点的抛物线的解析式。2, 求与抛物线y=x2+4x+3关于y轴(或x轴)对称的抛物线的解析式。 切点式。1,已知直线y=ax-a2(a0) 与抛物线y=mx2 有唯一公共点,求抛物线的解析式。2, 直线y=x+a 与抛物线y=ax2 +k 的唯一公共点A(2,1),求抛物线的解析式。 判别式式。1、已知关于X的一元二次方程(m+1)x2+2(m+1)x+2=0有两个相等的实数根,求抛物线y=-x2+(m+1)x+3解析式。2、
19、 已知抛物线y=(a+2)x2-(a+1)x+2a的顶点在x轴上,求抛物线的解析式。3、已知抛物线y=(m+1)x2+(m+2)x+1与x轴有唯一公共点,求抛物线的解析式。23章 旋转在平面内,把一个平面图形绕着平面内某一点O转动一个角度,就叫做图形的旋转,点O叫做旋转中心,转动的角叫做旋转角。我们把旋转中心、旋转角度、旋转方向称为旋转的三要素。知识点二旋转的性质旋转的特征:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等。理解以下几点:(1)图形中的每一个点都绕旋转中心旋转了同样大小的角度。(2)对应点到旋转中心的距离相等,对应线段相
20、等,对应角相等。(3)图形的大小和形状都没有发生改变,只改变了图形的位置。知识点三利用旋转性质作图旋转有两条重要性质:(1)任意一对对应点与旋转中心所连线段的夹角等于旋转角;(2)对应点到旋转中心的距离相等,它是利用旋转的性质作图的关键。步骤可分为:连:即连接图形中每一个关键点与旋转中心;转:即把直线按要求绕旋转中心转过一定角度(作旋转角)截:即在角的另一边上截取关键点到旋转中心的距离,得到各点的对应点;接:即连接到所连接的各点。23.2中心对称知识点一中心对称的定义中心对称:把一个图形绕着某一个点旋转180,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对
21、称中心。注意以下几点:中心对称指的是两个图形的位置关系;只有一个对称中心;绕对称中心旋转180两个图形能够完全重合。知识点二作一个图形关于某点对称的图形要作出一个图形关于某一点的成中心对称的图形,关键是作出该图形上关键点关于对称中心的对称点。最后将对称点按照原图形的形状连接起来,即可得出成中心对称图形。知识点三中心对称的性质有以下几点:(1)关于中心对称的两个图形上的对应点的连线都经过对称中心,并且都被对称中心平分;(2)关于中心对称的两个图形能够互相重合,是全等形;(3)关于中心对称的两个图形,对应线段平行(或共线)且相等。知识点四中心对称图形的定义把一个图形绕着某一个点旋转180,如果旋转
22、后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。知识点五关于原点对称的点的坐标在平面直角坐标系中,如果两个点关于原点对称,它们的坐标符号相反,即点p(x,y)关于原点对称点为(-x,-y)。圆章节知识点复习一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(
23、也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。二、点与圆的位置关系1、点在圆内 点在圆内;2、点在圆上 点在圆上;3、点在圆外 点在圆外;三、直线与圆的位置关系1、直线与圆相离 无交点;2、直线与圆相切 有一个交点;3、直线与圆相交 有两个交点;四、圆与圆的位置关系外离(图1) 无交点 ;外切(图2) 有一个交点 ;相交(图3) 有两个交点 ;内切(图4) 有一个交点 ;内含(图5) 无
24、交点 ; 五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: 是直径 弧弧 弧弧中任意2个条件推出其他3个结论。推论2:圆的两条平行弦所夹的弧相等。 即:在中, 弧弧六、圆心角定理圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。 此定理也称1推3定理,即上述四个结
25、论中,只要知道其中的1个相等,则可以推出其它的3个结论,即:; 弧弧七、圆周角定理1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。即:和是弧所对的圆心角和圆周角 2、圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;即:在中,、都是所对的圆周角 推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。即:在中,是直径 或 是直径推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。即:在中, 是直角三角形或注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理
26、。八、圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。 即:在中, 四边形是内接四边形 九、切线的性质与判定定理(1)切线的判定定理:过半径外端且垂直于半径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可 即:且过半径外端 是的切线(2)性质定理:切线垂直于过切点的半径(如上图) 推论1:过圆心垂直于切线的直线必过切点。 推论2:过切点垂直于切线的直线必过圆心。以上三个定理及推论也称二推一定理:即:过圆心;过切点;垂直切线,三个条件中知道其中两个条件就能推出最后一个。十、切线长定理切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连
27、线平分两条切线的夹角。即:、是的两条切线 平分十一、圆幂定理(1)相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。即:在中,弦、相交于点, (2)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。即:在中,直径, (3)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。即:在中,是切线,是割线 (4)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如上图)。即:在中,、是割线 十二、两圆公共弦定理圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的的公共弦。如图:垂直平分。即:、相交于、两点 垂直平分十三、圆的公切线两圆公切线长的计算公式:(1)公切线长:中,;(2)外公切线长:是半径之差; 内公切线长:是半径之和 。十四、圆内正多边形的计算(1)正三角形 在中是正三角形,有关计算在中进行:;(2)正四边形同理,四边形的有关计算在中进行,:(3)正六边形同理,六边形的有关计算在中进行,.十五、扇形、圆柱和圆锥的相关计算公式1、扇形:(1)弧长公式:;(2)扇形面积公式: :圆心角 :扇形多对应的圆的半径 :扇形弧长 :扇形面积2、圆柱: (1)圆柱侧面展开图 =(2)圆柱的体积:(2)圆锥侧面展开图(1)=(2)圆锥的体积: