《初三数学压轴题含答案 .doc》由会员分享,可在线阅读,更多相关《初三数学压轴题含答案 .doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、准备题1. 如图,直线y= - x+1和抛物线y=x2+bx+c都经过点A(2,0)和点B(k,)OBAxy(图6)(1)k的值是 ;(2)求抛物线的解析式; (3)不等式x2+bx+c - x+1的解集是 . 例1.如图,直线与轴,轴分别相交于点,点,经过两点的抛物线与轴的另一交点为,顶点为,且对称轴是直线(1)求点的坐标;(2)求该抛物线的函数表达式;(3)连结请问在轴上是否存在点,使得以点为顶点的三角形与相似,若存在,请求出点的坐标;若不存在,请说明理由解 直线与轴相交于点,当时,点的坐标为 又抛物线过轴上的两点,且对称轴为,根据抛物线的对称性,点的坐标为 (2)过点,易知, 又抛物线过
2、点, 解得 (3)连结,由,得,设抛物线的对称轴交轴于点,在中,由点易得,在等腰直角三角形中,由勾股定理,得假设在轴上存在点,使得以点为顶点的三角形与相似当,时,即,又,点与点重合,的坐标是 当,时,即,的坐标是 点不可能在点右侧的轴上综上所述,在轴上存在两点,能使得以点为顶点的三角形与相似。例2.二次函数的图象如图所示,过轴上一点的直线与抛物线交于,两点,过点,分别作轴的垂线,垂足分别为,(1)当点的横坐标为时,求点的坐标;(2)在(1)的情况下,分别过点,作轴于,轴于,在上是否存在点,使为直角若存在,求点的坐标;若不存在,请说明理由;(3)当点在抛物线上运动时(点与点不重合),求的值 解
3、(1)根据题意,设点的坐标为,其中点的横坐标为, 轴,轴,即解得(舍去), (2)存在连结,由(1),设,则轴,轴,解得经检验均为原方程的解点的坐标为或 (3)根据题意,设,不妨设,由(1)知,则或化简,得, 例3. (湖北湛江课改卷)已知抛物线与轴相交于点,且是方程的两个实数根,点为抛物线与轴的交点(1)求的值(2)分别求出直线和的解析式;(3)若动直线与线段分别相交于两点,则在轴上是否存在点,使得为等腰直角三角形?若存在,求出点的坐标;1 2 3 4321xy 解 (1)由,得,把两点的坐标分别代入联立求解,得 (2)由(1)可得,当时,设,把两点坐标分别代入,联立求得直线的解析式为 同理
4、可求得直线的解析式是 (3)假设存在满足条件的点,并设直线与轴的交点为当为腰时,分别过点作轴于,作轴于,如图,则和都是等腰直角三角形,OxyDEF,即解得 点的纵坐标是,点在直线上,解得,同理可求 当为底边时,OxyDEFG过的中点作轴于点,如图,则,由,得,即,解得 同1方法求得, 结合图形可知,是,也满足条件综上所述,满足条件的点共有3个,即 例4.在矩形中,以为坐标原点,所在的直线为轴,建立直角坐标系然后将矩形绕点逆时针旋转,使点落在轴的点上,则和点依次落在第二象限的点上和轴的点上(如图)(1)求经过三点的二次函数解析式;(2)设直线与(1)的二次函数图象相交于另一点,试求四边形的周长(
5、3)设为(1)的二次函数图象上的一点,求点的坐标(1)解:由题意可知, , 设经过三点的二次函数解析式是把代入之,求得 3分所求的二次函数解析式是: (2)解:由题意可知,四边形为矩形,且 直线与二次函数图象的交点的坐标为, 与与关于抛物线的对称轴对称, 四边形的周长 (3)设交轴于,即,于是 设直线的解析式为把,代入之,得解得 组成方程组解得或(此组数为点坐标)所求的点坐标为 练习. 如图11,抛物线y = - x2+2x+3与x轴交于点A、B,与y轴交于点C,点D是抛物线的顶点,连接BC、BD. (1)点A的坐标是 ,点B的坐标是 ,点D的坐标是 ;(2)若点E是x轴上一点,连接CE,且满足ECB =CBD,求点E坐标.yxDCOAB.(图11)yyxyDyCyOyAyBy(备用图).(3)若点P在x轴上且位于点B右侧,点A、Q关于点P中心对称,连接QD,且BDQ=45,求点P坐标(请利用备用图解决问题).