《变化率与导数教案 .doc》由会员分享,可在线阅读,更多相关《变化率与导数教案 .doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第三章 变化率和导数311瞬时变化率导数教学目标: (1)理解并掌握曲线在某一点处的切线的概念(2)会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度(3)理解导数概念 实际背景,培养学生解决实际问题的能力,进一步掌握在一点处的导数的定义及其几何意义,培养学生转化问题的能力及数形结合思想教学过程:时速度我们是通过在一段时间内的平均速度的极限来定义的,只要知道了物体的运动方程,代入公式就可以求出瞬时速度了.运用数学工具来解决物理方面的问题,是不是方便多了.所以数学是用来解决其他一些学科,比如物理、化学等方面问题的一种工具,我们这一节课学的内容以及上一节课学的是我们学习导数的一些实际背景一
2、、复习引入1、什么叫做平均变化率;2、曲线上两点的连线(割线)的斜率与函数f(x)在区间xA,xB上的平均变化率3、如何精确地刻画曲线上某一点处的变化趋势呢?下面我们来看一个动画。从这个动画可以看出,随着点P沿曲线向点Q运动,随着点P无限逼近点Q时,则割线的斜率就会无限逼近曲线在点Q处的切线的斜率。所以我们可以用Q点处的切线的斜率来刻画曲线在点Q处的变化趋势二、新课讲解1、曲线上一点处的切线斜率不妨设P(x1,f(x1),Q(x0,f(x0),则割线PQ的斜率为,设x1x0=x,则x1 =xx0,当点P沿着曲线向点Q无限靠近时,割线PQ的斜率就会无限逼近点Q处切线斜率,即当x无限趋近于0时,无
3、限趋近点Q处切线斜率。2、曲线上任一点(x0,f(x0)切线斜率的求法:,当x无限趋近于0时,k值即为(x0,f(x0)处切线的斜率。3、瞬时速度与瞬时加速度(1)平均速度: 物理学中,运动物体的位移与所用时间的比称为平均速度(2) 位移的平均变化率:(3)瞬时速度:当无限趋近于0 时,无限趋近于一个常数,这个常数称为t=t0时的瞬时速度求瞬时速度的步骤:1.先求时间改变量和位置改变量2.再求平均速度3.后求瞬时速度:当无限趋近于0,无限趋近于常数v为瞬时速度(4)速度的平均变化率:(5)瞬时加速度:当无限趋近于0 时,无限趋近于一个常数,这个常数称为t=t0时的瞬时加速度注:瞬时加速度是速度
4、对于时间的瞬时变化率三、数学应用例1、已知f(x)=x2,求曲线在x=2处的切线的斜率。变式:1.求过点(1,1)的切线方程2.曲线y=x3在点P处切线斜率为k,当k=3时,P点的坐标为_3.已知曲线上的一点P(0,0)的切线斜率是否存在?例2.一直线运动的物体,从时间到时,物体的位移为,那么为( )从时间到时,物体的平均速度; 在时刻时该物体的瞬时速度; 当时间为时物体的速度; 从时间到时物体的平均速度例3.自由落体运动的位移s(m)与时间t(s)的关系为s=(1)求t=t0s时的瞬时速度 (2)求t=3s时的瞬时速度 (3)求t=3s时的瞬时加速度点评:求瞬时速度,也就转化为求极限,瞬3.
5、1.2 导数的几何意义(1)教学目的:1. 了解平均变化率与割线之间的关系2. 理解曲线的切线的概率3. 通过函数的图像理解导数的几何意义教学重点函数切线的概念,切线的斜率,导数的几何意义教学难点理解导数的几何意义教学过程练习练习注意3.23导数的几何意义(2)教学目标:理解导数概念.掌握函数在一点处的导数定义及求法.掌握函数的导数的求法.教学重点:导数的概念及其求法.及几何意义。教学难点:对导数概念的理解.教学过程:复习引入1函数的导数值函数yf(x),如果自变量x在x0处有增量Dx,则函数y相应地有增量 Dyf(x0Dx)f(x0)比值就叫做函数yf(x)在x0到x0Dx之间的平均变化率,
6、即 如果当x0时,有极限,我们就说函数yf(x)在点x0处可导,并把这个极限叫做f(x)在x0处的导数(或变化率) 记作f (x0) 或,即 f (x0)=2函数 yf(x) 的导函数如果函数在开区间(a, b)内每点处都有导数,对于每一个x0(a,b),都对应着一个确定的导数f (x0)从而构成一个新的函数f (x)称这个函数为函数yf(x)在开区间内的导函数简称导数也可记作y3导数的几何意义函数yf(x) 在点x0处的导数的几何意义,就是曲线yf(x)在点P(x0, f(x0))处的切线的斜率也就是说,曲线yf(x)在点P(x0, f(x0))处的切线的斜率是f (x0)切线方程为 yy0
7、f (x0) (x0x0)练习:1当自变量从x0变到x1时,函数值的增量与相应自变量的增量之比是函数( A )A在区间x0,x1上的平均变化率B在x0处的变化率C在x1处的导数D在区间x0,x1上的导数2下列说法正确的是( C )A若f (x0)不存在,则曲线y = f (x)在点(x0, f (x0)处就没有切线B若曲线y = f (x)在点(x0, f (x0)处有切线,则f (x0)必存在C若f (x0)不存在,则曲线y = f (x)在点(x0, f (x0)处的切线斜率不存在D若曲线y = f (x)在点(x0, f (x0)处的切线斜率不存在,则曲线在该点处就没有切线3已知曲线求
8、点P处的切线的斜率; 点P处的切线的方程解: 点P处的切线的斜率等于4在点P处的切线的方程是 即新课讲授:例1 教材例2。例2 教材例3。练习:甲、乙二人跑步的路程与时间关系以及百米赛跑路程和时间关系分别如图,试问:(1)甲、乙二人哪一个跑得快? (2)甲、乙二人百米赛跑,问快到终点时,谁跑得较快?解:(1)乙跑的快;(2)乙跑的快.例3教材P10面第5题例4教材P11面第3题。例5已知:曲线与在处的切线互相垂直,求的值。例6已知点M (0, 1),F (0, 1),过点M的直线l与曲线在x = 2处的切线平行.(1)求直线l的方程;(2)求以点F为焦点,l为准线的抛物线C的方程.解:(1)=
9、 0. 直线l的斜率为0,其方程为y = 1.(2)抛物线以点F (0, 1)为焦点,y = 1为准线. 设抛物线的方程为x2 = 2py,则. 故抛物线C的方程为x2 = 4y.课堂小结导数的几何意义函数yf(x) 在点x0处的导数的几何意义,就是曲线yf(x)在点P(x0, f(x0))处的切线的斜率也就是说,曲线yf(x)在点P(x0, f(x0))处的切线的斜率是f (x0)切线方程为 yy0f (x0) (x0x0)课 后 作 业324导数与导函数的概念教学目标:1、知识与技能:理解导数的概念、掌握简单函数导数符号表示和求解方法; 理解导数的几何意义; 理解导函数的概念和意义;2、过
10、程与方法:先理解概念背景,培养解决问题的能力;再掌握定义和几何意义,培养转化问题的能力;最后求切线方程,培养转化问题的能力3、情感态度及价值观;让学生感受事物之间的联系,体会数学的美。教学重点: 1、导数的求解方法和过程;2、导数符号的灵活运用教学难点:1、 导数概念的理解;2、导函数的理解、认识和运用教学过程一、情境引入在前面我们解决的问题:1、求函数在点(2,4)处的切线斜率。,故斜率为4 2、直线运动的汽车速度V与时间t的关系是,求时的瞬时加速度。,故瞬时加速度为2t 二、知识点讲解上述两个函数和中,当()无限趋近于0时,()都无限趋近于一个常数。归纳:一般的,定义在区间(,)上的函数,
11、当无限趋近于0时,无限趋近于一个固定的常数A,则称在处可导,并称A为在处的导数,记作或,上述两个问题中:(1),(2)三、几何意义:我们上述过程可以看出在处的导数就是在处的切线斜率。四、例题选讲例1、求下列函数在相应位置的导数(1), (2),(3),例1、函数满足,则当x无限趋近于0时,(1) (2) 变式:设f(x)在x=x0处可导,(3)无限趋近于1,则=_(4)无限趋近于1,则=_(5)当x无限趋近于0,所对应的常数与的关系。总结:导数等于纵坐标的增量与横坐标的增量之比的极限值。例3、若,求和注意分析两者之间的区别。例4:已知函数,求在处的切线。导函数的概念涉及:的对于区间(,)上任意
12、点处都可导,则在各点的导数也随x的变化而变化,因而也是自变量x的函数,该函数被称为的导函数,记作。五、小结与作业例2、已知(1)求在处的导数;(2)求在处的导数.补充:已知点M(0,-1),F(0,1),过点M的直线与曲线在处的切线平行.(1)求直线的方程;(2)求以点F为焦点, 为准线的抛物线C的方程.331常见函数的导数一、教学目标:掌握初等函数的求导公式;二、教学重难点:用定义推导常见函数的导数公式一、复习1、导数的定义;2、导数的几何意义;3、导函数的定义;4、求函数的导数的流程图。(1)求函数的改变量(2)求平均变化率(3)取极限,得导数 本节课我们将学习常见函数的导数。首先我们来求
13、下面几个函数的导数。(1)、y=x (2)、y=x2 (3)、y=x3 问题:,呢?问题:从对上面几个幂函数求导,我们能发现有什么规律吗?二、新授1、基本初等函数的求导公式: (k,b为常数) (C为常数) 由你能发现什么规律? (为常数) 从上面这一组公式来看,我们只要掌握幂函数、指对数函数、正余弦函数的求导就可以了。例1、求下列函数导数。(1)(2)(3)(4)(5)y=sin(+x) (6) y=sin (7)y=cos(2x) (8)y=例2:已知点P在函数y=cosx上,(0x2),在P处的切线斜率大于0,求点P的横坐标的取值范围。例3.若直线为函数图象的切线,求b的值和切点坐标.变
14、式1.求曲线y=x2在点(1,1)处的切线方程.总结切线问题:找切点 求导数 得斜率变式2:求曲线y=x2过点(0,-1)的切线方程变式3:求曲线y=x3过点(1,1)的切线方程变式4:已知直线,点P为y=x2上任意一点,求P在什么位置时到直线距离最短.练习 求下列函数的导数: yx5; yx6; (3) (4) (5)例2求曲线和在它们交点处的两条切线与x轴所围成的三角形的面积。例3已知曲线上有两点A(1,1),B(2,2)。求:(1)割线AB的斜率; (2)在1,1+x内的平均变化率; (3)点A处的切线的斜率; (4)点A处的切线方程例4求抛物线yx2上的点到直线xy20 的最短距离三、
15、小结(1)基本初等函数公式的求导公式(2)公式的应用341基本初等函数的导数及导数的运算法则(1)一、教学目标:掌握八个函数求导法则及导数的运算法则并能简单运用.二、教学重点:应用八个函数导数求复杂函数的导数.教学难点:商求导法则的理解与应用.三、教学过程:(一)新课1P14面基本初等函数的导数公式(见教材)2导数运算法则:(1)和(或差)的导数法则1 两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即(uv)uv例1 求yx3sinx的导数解:y(x3)(sinx) 3x2cosx 例2 求yx4x2x3的导数解:y4x3 2x1(2)积的导数法则2 两个函数的积的导数,等于第
16、一个函数的导数乘第二个函数,加上第一个函数乘第二个函数的导数,即 (uv)uvuv由此可以得出 (Cu)C uCu0CuCu 也就是说,常数与函数的积的导数,等于常数乘函数的导数,即 (Cu)Cu 例3 求y2x33x25x4的导数解:y6x26x5例4 求y(2x23) (3x2) 的导数解:y(2x23)(3x2)(2x23)(3x2)4x(3x2)(2x23)318x28x9或:,练习1填空: (3x21)(4x23)( 6x )(4x23) (3x21)( 8x ); (x3sinx)( 3 )x2sinxx3 ( cosx )2判断下列求导是否正确,如果不正确,加以改正:(3x2)(
17、2x3)2x(2x3)3x2(3x2)(3x2)(2x3)2x(2x3)3x2(3x2)3求下列函数的导数: y2x33x25x4; yax3bxc; ysinxx1; (4) y(3x21)(2x); (5) y(1x2)cosx; (6)例5 已知函数f(x)x2(x1),若f (x0)f(x0),求x0的值(3)商的导数例6求下列函数的导数 (1) (2) (3)练习:求下列函数的导数(1) (2)例7求函数的导数思考:设 f(x)x(x1) (x2) (xn),求f (0) 练习. 函数f(x)x(x1) (x2)(x3) (x100)在x0处的导数值为( )A. 0 B. 1002
18、C. 200 D. 100!(三)课 堂 小 结1和(或差)的导数 (uv)uv2积的导数 (uv)uvuv(四)课 后 作 业342函数的和、差、积、商的导数教学目的:1.理解两个函数的和(或差)的导数法则,学会用法则求一些函数的导数2.理解两个函数的积的导数法则,学会用法则求乘积形式的函数的导数 3.能够综合运用各种法则求函数的导数 教学重点:用定义推导函数的和、差、积、商的求导法则教学难点:函数的积、商的求导法则的推导 授课类型:新授课 教学过程:一、复习引入: 常见函数的导数公式:;(k,b为常数) ; ; 二、讲解新课:例1.求的导数.法则1 两个函数的和(或差)的导数,等于这两个函
19、数的导数的和(或差),即 法则2常数与函数的积的导数,等于常数与函数的积的导数法则3两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即 证明:令,则-+-, +因为在点x处可导,所以它在点x处连续,于是当时,从而+ ,法则4 两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方,即三、讲解范例:例1 求下列函数的导数1、y=x2+sinx的导数.2、求的导数(两种方法) 3、求下列函数的导数4、y=5x10sinx2cosx9,求y5、求y=的导数.变式:(1)求y=在点x=3处的导数.(2) 求y=cosx的导数
20、.例2求y=tanx的导数.例3求满足下列条件的函数(1) 是三次函数,且(2)是一次函数, 变式:已知函数f(x)=x3+bx2+cx+d的图象过点P(0,2),且在点M处(-1,f(-1)处的切线方程为6x-y+7=0,求函数的解析式四、课堂练习:1.求下列函数的导数:(1)y= (2)y= (3)y=五、小结 :由常函数、幂函数及正、余弦函数经加、减、乘运算得到的简单的函数均可利用求导法则与导数公式求导,而不需要回到导数的定义去求此类简单函数的导数,商的导数法则()=(v0),如何综合运用函数的和、差、积、商的导数法则,来求一些复杂函数的导数.要将和、差、积、商的导数法则记住 六、课后作
21、业:343简单复合函数的导数教学目的:知识与技能:理解掌握复合函数的求导法则.过程与方法:能够结合已学过的法则、公式,进行一些复合函数的求导 情感、态度与价值观:培养学生善于观察事物,善于发现规律,认识规律,掌握规律,利用规律教学重点:复合函数的求导法则的概念与应用教学难点:复合函数的求导法则的导入与理解教具准备:与教材内容相关的资料。教学设想:提供一个舞台, 让学生展示自己的才华,这将极大地调动学生的积极性,增强学生的荣誉感,培养学生独立分析问题和解决问题的能力,体现了“自主探究”,同时,也锻炼了学生敢想、敢说、敢做的能力。教学过程:学生探究过程:一、复习引入: 1. 常见函数的导数公式:;
22、2.法则1 法则2 , 法则3 二、讲解新课:1.复合函数: 由几个函数复合而成的函数,叫复合函数由函数与复合而成的函数一般形式是,其中u称为中间变量2.求函数的导数的两种方法与思路:方法一:;方法二:将函数看作是函数和函数复合函数,并分别求对应变量的导数如下:,两个导数相乘,得 , 从而有 对于一般的复合函数,结论也成立,以后我们求yx时,就可以转化为求yu和ux的乘积,关键是找中间变量,随着中间变量的不同,难易程度不同.3.复合函数的导数:设函数u=(x)在点x处有导数ux=(x),函数y=f(u)在点x的对应点u处有导数yu=f(u),则复合函数y=f( (x)在点x处也有导数,且 或f
23、x( (x)=f(u) (x).证明:(教师参考不需要给学生讲)设x有增量x,则对应的u,y分别有增量u,y,因为u=(x)在点x可导,所以u= (x)在点x处连续.因此当x0时,u0.当u0时,由. 且.即 (当u0时,也成立)4.复合函数的求导法则复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数 5.复合函数求导的基本步骤是:分解求导相乘回代三、讲解范例:例1试说明下列函数是怎样复合而成的?; ; 解:函数由函数和复合而成;函数由函数和复合而成;函数由函数和复合而成;函数由函数、和复合而成说明:讨论复合函数的构成时,“内层”、“外层”函数一般应是基本初等函数
24、,如一次函数、二次函数、指数函数、对数函数、三角函数等例2写出由下列函数复合而成的函数:,;,解:; 例3求的导数解:设,则 注意:在利用复合函数的求导法则求导数后,要把中间变量换成自变量的函数.有时复合函数可以由几个基本初等函数组成,所以在求复合函数的导数时,先要弄清复合函数是由哪些基本初等函数复合而成的,特别要注意将哪一部分看作一个整体,然后按照复合次序从外向内逐层求导.例4求f(x)=sinx2的导数.解:令y=f(x)=sinu; u=x2=(sinu)u(x2)x=cosu2x=cosx22x=2xcosx2f(x)=2xcosx2例5求y=sin2(2x+)的导数.分析: 设u=s
25、in(2x+)时,求ux,但此时u仍是复合函数,所以可再设v=2x+.解:令y=u2,u=sin(2x+),再令u=sinv,v=2x+=yu(uvvx)yx=yuuvvx=(u2)u(sinv)v(2x+)x=2ucosv2=2sin(2x+)cos(2x+)2=4sin(2x+)cos(2x+)=2sin(4x+)即yx=2sin(4x+)例6求的导数.解:令y=,u=ax2+bx+c=()u(ax2+bx+c)x=(2ax+b)=(ax2+bx+c)(2ax+b)=即yx=例7求y=的导数.解:令=()u()x即yx=例8 求y=sin2的导数.解:令y=u2,u=sin,再令u=sin
26、v,v=vx=(u2)u(sinv)v()x=2ucosv=2sincos=sinyx=sin例9 求函数y=(2x23)的导数.分析: y可看成两个函数的乘积,2x23可求导,是复合函数,可以先算出对x的导数.解:令y=uv,u=2x23,v=, 令v=,=1+x2 = (1+x2)x=yx=(uv)x=uxv+uvx=(2x23)x+(2x23)=4x即yx= 四、巩固练习:1求下列函数的导数(先设中间变量,再求导).(1)y=(5x3)4 (2)y=(2+3x)5 (3)y=(2x2)3 (4)y=(2x3+x)2解:(1)令y=u4,u=5x3=(u4)u(5x3)x=4u35=4(5
27、x3)35=20(5x3)3(2)令y=u5,u=2+3x=(u5)u(2+3x)x=5u43=5(2+3x)43=15(2+3x)4(3)令y=u3,u=2x2=(u3)u(2x2)x=3u2(2x)=3(2x2)2(2x)=6x(2x2)2(4)令y=u2,u=2x3+x=(u2)u(2x3+x)x=2u(23x2+1)=2(2x3+x)(6x2+1)=24x5+16x3+2x2.求下列函数的导数(先设中间变量,再求导)(nN*)(1)y=sinnx (2)y=cosnx (3)y=tannx (4)y=cotnx解:(1)令y=sinu,u=nx=(sinu)u(nx)x=cosun=ncosnx(2)令y=cosu,u=nx=(cosu)u(nx)x=sinun=nsinnx(3)令y=tanu,u=nx=(tanu)u(nx)x=()un=n=nsec2nx(4)令y=cotu,u=nx=(cotu)u(nx)x=()un=n=n=ncsc2nx五、教学反思 :复合函数的求导,要注意分析复合函数的结构,引入中间变量,将复合函数分解成为较简单的函数,然后再用复合函数的求导法则求导;复合函数求导的基本步骤是:分解求导相乘回代 六、课后作业: