《工程力学》复习指导含答案 .doc

上传人:yy****2 文档编号:97459899 上传时间:2024-06-13 格式:DOC 页数:20 大小:870KB
返回 下载 相关 举报
《工程力学》复习指导含答案 .doc_第1页
第1页 / 共20页
《工程力学》复习指导含答案 .doc_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《《工程力学》复习指导含答案 .doc》由会员分享,可在线阅读,更多相关《《工程力学》复习指导含答案 .doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、材料力学 重点及其公式材料力学的任务 (1)强度要求; (2)刚度要求; (3)稳定性要求。变形固体的基本假设 (1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。外力分类:表面力、体积力;内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2)在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。(3)根据平衡条件,列平衡方程,求解截面上和内力。应力: 正应力、切应力。 变形与应变:线应变、切应变。杆件变形的基

2、本形式 (1)拉伸或压缩;(2)剪切;(3)扭转;(4)弯曲;静载荷:载荷从零开始平缓地增加到最终值,然后不在变化的载荷动载荷:载荷和速度随时间急剧变化的载荷为动载荷。失效原因:脆性材料在其强度极限破坏,塑性材料在其屈服极限时失效。二者统称为极限应力理想情形。塑性材料、脆性材料的许用应力分别为:,强度条件:,等截面杆 轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为:,沿轴线方向的应变和横截面上的应力分别为:,。横向应变为:,横向应变与轴向应变的关系为:。胡克定律:当应力低于材料的比例极限时,应力与应变成正比,即 ,这就是胡克定律。E为弹性模量。将应力与应变的表达式带入得:静不定:对于杆件的轴力

3、,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部未知力。圆轴扭转时的应力 变形几何关系圆轴扭转的平面假设。物理关系胡克定律。力学关系 圆轴扭转时的应力:;圆轴扭转的强度条件: ,可以进行强度校核、截面设计和确定许可载荷。圆轴扭转时的变形:; 等直杆:圆轴扭转时的刚度条件: ,弯曲内力与分布载荷q之间的微分关系;Q、M图与外力间的关系a)梁在某一段内无载荷作用,剪力图为一水平直线,弯矩图为一斜直线。b)梁在某一段内作用均匀载荷,剪力图为一斜直线,弯矩图为一抛物线。c)在梁的某一截面。,剪力等于零,弯矩有一最大值或最小值。d)由集中力作用截面的左侧和右侧,剪力Q有一突然变化,弯矩图

4、的斜率也发生突然变化形成一个转折点。梁的正应力和剪应力强度条件,提高弯曲强度的措施:梁的合理受力(降低最大弯矩,合理放置支座,合理布置载荷,合理设计截面形状塑性材料:,上、下对称,抗弯更好,抗扭差。脆性材料:, 采用T字型或上下不对称的工字型截面。等强度梁:截面沿杆长变化,恰使每个截面上的正应力都等于许用应力,这样的变截面梁称为等强度梁。二向应力状态分析解析法(1)任意斜截面上的应力;(2)极值应力 正应力:, 切应力:, (3)主应力所在的平面与剪应力极值所在的平面之间的关系与之间的关系为:,即:最大和最小剪应力所在的平面与主平面的夹角为45扭转与弯曲的组合(1)外力向杆件截面形心简化(2)

5、画内力图确定危险截面(3)确定危险点并建立强度条件按第三强度理论,强度条件为: 或, 对于圆轴,其强度条件为:。按第四强度理论,强度条件为: ,经化简得出:,对于圆轴,其强度条件为:。第一部分 静力学判断题1、力的三要素是大小、方向、作用线。 ( F )2、两个力只能合成唯一的一个力,故一个力也只能分解为唯一的两个力。( F )3、力偶对其作用面内任意一点之矩恒等于力偶矩,与矩心位置无关。( T )4、作用于刚体上的力F,可以平移到刚体上的任一点,但必须同时附加一个力偶。( T ) 5、作用力和反作用力必须大小相等、方向相反,且作用在同一直线上和同一物体上。 ( F ) 1、物体的形心不一定在

6、物体上。 ( T )2、作用力与反作用力是一组平衡力系。 ( F )3、两个力在同一轴上的投影相等,此两力必相等。 ( F )4、力系的合力一定比各分力大。 ( F )5、两个力在同一轴上的投影相等,此两力必相等。 ( F )1、作用力与反作用力是一组平衡力系。 ( F )2、作用在任何物体上的力都可以沿其作用线等效滑移 ( F )3、图示平面平衡系统中,若不计定滑轮和细绳的重力,且忽略摩擦,则可以说作用在轮上的矩为m的力偶与重物的mF重力F相平衡。 ( FF ) 4、作用在同一刚体上的两个力,使刚体处于平衡的必要和充分的条件是: 这两个力大小相等、方向相反、作用线沿同一条直线。 ( T )5

7、、物体的重心和形心虽然是两个不同的概念,但它们的位置却总是重合的。 ( F )1、如果力FR是F1、F2两力的合力,用矢量方程表示为 FR = F1 + F2,则三力大小之间的关系为 D 。 A必有FR = F1 + F2 B不可能有FR = F1 + F2C必有FRF1,FRF2 D可能有FRF1,FRF2第二部分 材料力学部分判断题1、杆件的基本变形有四种:轴向拉伸或压缩、剪切、挤压和弯曲。( F )2、当作用于杆件两端的一对外力等值、反向、共线时,则杆件产生轴向拉伸或压缩变形。 ( F )3、轴力的大小与杆件的横截面面积有关。 ( F )4、拉(压)杆中,横截面上的内力只与杆件所受外力有

8、关。 ( T )5、轴力的大小与杆件的材料无关。 ( T )1、轴力越大,杆件越容易被拉断,因此轴力的大小可以用来判断杆件的强度。( F )2、从某材料制成的轴向拉伸试样,测得应力和相应的应变,即可求得其E = / 。( F )3、构件抵抗变形的能力称为刚度。 ( T )4、轴向拉压杆任意斜截面上只有均匀分布的正应力,而无剪应力。 ( F )5、材料的弹性模量E是一个常量,任何情况下都等于应力和应变的比值( F )1、正应变的定义为 ( F )2、对于拉伸曲线上没有屈服平台的合金塑性材料,工程上规定作为名义屈服极限,此时相对应的应变为 ( F ) 3、在有集中力作用处,梁的剪力图要发生突变,弯

9、矩图的斜率要发生突变。 T 4、圆环形截面的W= ( F )5、在研究一点的应力状态时,正应力为零的平面称为主平面。 ( F ) 选择题1、 两根受相同轴向拉力作用的杆件,它们的材料和横截面面积相同,杆的长度为杆的倍,试比较它们的轴力和轴向变形。正确结论为:( C)A两杆的轴力和轴向变形相同B两杆的轴力相同,杆的轴向变形比杆2的小C两杆的轴力相同,杆的轴向变形比杆2的大D两杆的变形相同,杆的轴力比杆2大2、低碳钢的拉伸过程中,( B )阶段的特点是应力几乎不变,而应变却显著增加。A弹性B屈服C强化D.颈缩3、二根圆截面拉杆,材料及受力均相同,两杆直径d1 / d2 =2 ,若要使二杆轴向伸长量

10、相同,那么它们的长度比l 1 / l 2 应为( D )。 A 1 B 2 C 3 D 44、图示圆截面悬臂梁,若其它条件不变,而直径增加一倍,则其最大正应力是原来的( A )倍。 A: B:8 C:2D: 5、图示结构,其中AD杆发生的变形为( C )。A弯曲变形 B压缩变形 C弯曲与压缩的组合变形 D弯曲与拉伸的组合变形6、三根试件的尺寸相同,材料不同,其应力应变关系如图所示,( A )试件弹性模量最大。A(1) B(2) C(3) 1、平面汇交四个力作出如下图所示力多边形,表示力系平衡的是( A )。2、截面C处扭矩的突变值为( B )。A B C D3、 某点为平面应力状态(如图所示)

11、,该点的主应力分别为:( B )50Mpa30MpaA B C 4、在研究一点的应力状态时,引用主平面的概念,所谓主平面是指( C )。 A正应力为零的平面 B剪应力最大的平面 C剪应力为零的平面 D正应力应力均为零的平面5、一直径为d的实心圆轴,按强度条件计算其受扭转时的容许转力矩为T,当此轴的横截面面积增加一倍时,其容许扭转力矩将为( B )。A2T; B2TC4T. D4T1、作为脆性材料的极限应力是( D )A. 比例极限 B 弹性极限C屈服极限 D强度极限2、为了保证结构的安全和正常工作,对构件承载能力要求是( D )A强度要求; B强度要求和刚度要求;C刚度要求和稳定性要求; D强

12、度要求、刚度要求和稳定性要求。3、第二强度理论是( C )A最大剪应力理论; B最大拉应力理论;C最大拉应变理论; D形状改变比能理论。4、工程中一般是以哪个指标来区分塑性材料和脆性材料的?( D )A弹性模量 B强度极限比例极限 D延伸率5、环形截面对其形心的极惯性矩为( B )A. ;B. ;C. ;D .1、塑性材料的危险应力是( C ),脆性材料的危险应力是( D )A. 比例极限B. 弹性极限C 屈服极限D 强度极限2、圆轴扭转变形时最大的剪应力发生在( C ). A圆心处 B中性轴处C圆轴边缘 D不确定。3、如果仅从扭转强度方面考虑,图(a)、(b)所示的传动轴的两种齿轮布置方式中

13、 ,( B )图的较为合理。2mmm( A )2mmF ( B )m(c)4、如果仅从弯曲正应力强度方面考虑,图(c)、(d)所示梁的两种支座布置方式中 ,( D )图的较为合理。q( B )q( A ) 5、杆件的刚度是指( D )。A 杆件的软硬程度; B 杆件的承载能力; C 杆件对弯曲的抵抗能力; D 杆件对变形的抵抗能力。1、物体受力作用而发生变形,当外力去掉后又能恢复原来形状和尺寸的性质称为( A )。 A弹性 B塑料 C刚性 D稳定性2、没有明显屈服平台的塑性材料,其破坏应力取材料的( C )。 A比例极限 B名义屈服极限 C强度极限3、低碳钢的拉伸曲线如图。若加载至强化阶段的C

14、点,然后卸载,则应力回到零值的路径是沿( C )。 A 曲线cbao B曲线cbf (bf oa) C 直线ce (ce oa) D直线cd (cdo)cabdefo4、一圆截面直杆,两端承受拉力作用,若将其直径增大一倍,其他条件不变,则下列不对的是( C )。 A其轴力不变 B其应力是原来的 C其强度将是原来的2倍 D其伸长量是原来的5、钢筋经过冷作硬化处理后,其性能的变化是 。AA 比例极限提高 B 弹性模量降低 C延伸率提高1、某直梁横截面面积一定,试问下图所示的四种截面形状中,那一种抗弯能力最强 。BA矩形 B工字形 C圆形 D正方形 2、T形截面铸铁材料悬臂梁受力如图,轴Z为中性轴,

15、横截面合理布置的方案应为 B 。A (A) (B) (C) (D)3、物体受力作用而发生变形,当外力去掉后又能恢复原来形状和尺寸的性质称为( B )。 A塑性 B弹性 C刚性 D稳定性5、两拉杆的材料和所受拉力都相同,且均处在弹性范围内,若两杆长度相同,而截面积A1A2,则两杆的伸长L1( B )L2。A大于 B小于 C等于1、两根直径相同而长度及材料不同的圆轴,在相同扭矩作用下,其最大剪应力和单位长度扭转角之间的关系是( B )。A. max1 = max2,1 = 2;B. max1 = max2,1 2;C. max1 max2,1 = 2;D. max1 max2,1 2;2、一等直拉

16、杆在两端承受拉力作用,若其一段为钢,另一段为铝,则两段的( A )。A. 应力相同,变形不同B. 应力相同,变形相同C. 应力不同,变形相同D. 应力不同,变形不同3、对于没有明显屈服阶段的韧性材料,工程上规定( A )为其条件屈服应力。A. 产生0.2塑性应变时的应力值B. 产生2塑性应变时的应力值C. 其弹性极限D. 其强度极限4、第三强度理论的相当应力表达式是( C )。A. B. C. D. xyzPmBCAD4、试判断图示直角弯拐中各段分属于哪种基本的变形形式或什么组成成份的组合变形形式。AB段: 扭转 BC段: 弯曲 CD段: 弯曲,压缩 50Mpa30Mpa1、某点的应力状态如图

17、所示,该点的主应力分别为1=_50mpa_、 2=_30mpa_ 3= _0mpa_。2、判断下列各结构是静定还是静不定P(a)P(b)PP答:(a)是( 静定 )结构, (b)是( 静定 )结构,(c)是( 静定 )结构, (d)是( 静不定 )结构。4、塑性材料拉伸试应力超过屈服极限后逐渐卸载,短时间后再重新加载其 将得到提高,而 变形将减小。5、一圆截面直杆,两端承受拉力作用,若将其直径增大一倍,其他条件不变,则其轴力 不变 (变或不变);其应力是原来的 0.25 倍;其抗拉刚度将是原来的 4 倍;其伸长量是原来的 0.25 倍。计算题1、组合梁受力和约束如图,其中q=1kN/m, M=

18、4kNm, 不计梁的自重。求支座A和D处的约束力。 2m2m2m2mBCDAqMCDqMRDRC(1) 取CD杆研究(2) 取整体研究BCDAqMRDRBRA4mBA3mqMP2、图示刚架中,AB为直角弯杆。已知q=3kN/m, P=6kN, M=10kNm, 不计刚架自重。求固定端A处的约束力。 3、结构的尺寸及载荷如图所示。求:支座A处的约束反力和杆BF、 杆DE的受力。ABC1m1mDEP=20 kN1m1mFACDEP=20 kNFXAFBFYA解:研究ACEF,画受力图,列方程 CEFFBFFDEXAYA由 可知杆BF受大小为10KN的压力再研究杆CEF,画受力图,列方程 4、在图示

19、组合梁中,已知q =1kN/m,力偶M=2kNm , 不计梁的自重, 试求A、C、D处支座的约束反力。2 m1m1mqDCMBAxyFAyqDBAFAxFDCMBFCFB解:1、取BC杆研究,画受力图列平衡方程 2、取AB杆研究,画受力图列平衡方程 5、图示组合结构,杆重不计。已知:均布载荷集度q=6kN/m,集中力P=4 kN 。试求: A、B、D处约束力。ABCD1 m1 mq1 m1 mPABPxyFAyFAxMACDqBxyFDFByFBx解:1、取BC杆研究,画受力图列平衡方程 2、取AB杆研究,画受力图列平衡方程 1、图示阶梯形圆截面杆,承受轴向载荷F1=50 kN与F2作用,AB

20、与BC段的直径分别为d1=20 mm和d2=30 mm ,如欲使AB与BC段横截面上的正应力相同,试求载荷F2之值。BAF1F2C2121解:(1) 用截面法求出1-1、2-2截面的轴力; (2) 求1-1、2-2截面的正应力,利用正应力相同;2、如图所示托架,AB为圆钢杆cm,BC为正方形木杆a=14cm。杆端均用铰链连接。在结点B作用一载荷P=60kN。已知钢的许用应力=140MPa。木材的许用拉、压应力分别为=8MPa,Mpa,试校核托架能否正常工作。解 (1)校核托架强度由 ,解得 kN由 ,解得 kN杆AB、BC的轴力分别为kN, kN,即杆BC受压、轴力负号不参与运算。钢杆 Mpa

21、3.5Mpa=故木杆强度不够,托架不能安全承担所加载荷。3、AC、BC为钢杆,横梁AB为刚体,P=20kN;AC、BC横截面的面积为A100mm2,E=200GPa,=120MPa(1) 校核两杆的强度(2) 求P力作用点F的位移 F D C B A 2m1m1mP1mNBDNACFBAPlAlBFlF(1) 强度校核(2) 求F点的位移4、图示简易吊车的杆BC为钢杆,杆AB为木杆,。杆AB的横截面面积A1=100 cm2,许用应力s1=7 MPa;杆BC的横截面面积A2=6 cm2,许用应力s2=160 MPa。求许可吊重P。30o钢木CPAB解: (1) 以铰B为研究对象,画受力图和封闭的

22、力三角形;PN2N130oN1N2PB(2) 由AB杆的强度条件(3) 由BC杆的强度条件(4) 许可吊重注:BC杆受拉,AB杆受压;BC杆的强度比AB杆的强度高。5、图示桁架,杆1与杆2的横截面均为圆形,直径分别为d1=30 mm与d2=20 mm,两杆材料相同,许用应力=160 MPa。该桁架在节点A处承受铅直方向的载荷F=80 kN作用,试校核桁架的强度。FAyx300450FACFABFABC30045012解:(1) 对节点A受力分析,求出AB和AC两杆所受的力;(2) 列平衡方程 解得:(2) 分别对两杆进行强度计算;所以桁架的强度足够。6、图示桁架,杆1为圆截面钢杆,杆2为方截面

23、木杆,在节点A处承受铅直方向的载荷F作用,试确定钢杆的直径d与木杆截面的边宽b。已知载荷F=50 kN,钢的许用应力S =160 MPa,木的许用应力W =10 MPa。FABCl45012Ayx450FACFABFFABFACF解:(1) 对节点A受力分析,求出AB和AC两杆所受的力;(2) 运用强度条件,分别对两杆进行强度计算;所以可以确定钢杆的直径为20 mm,木杆的边宽为84 mm。1、某传动轴受力如图所示。已知轴的转速n =300r/min,主动轮输入功率P1=367kW,三个从动轮输出功率P2= P3110kW, P4=147kW。若轴的许用应力,试设计轴的直径d 。m2m3m1m

24、4m4m2m2+m3 2、一电机的传动轴传递的功率为30kW,转速为1400r/min,直径为40mm,轴材料的许用切应力=40Mpa,剪切弹性模量G=80GPa,许用单位扭转角=1/m,试校核该轴的强度和刚度。解 (1)计算扭矩 Nm (2)强度校核由式(8-28)有Mpa40Mpa=(3)刚度校核由式(9-11)有/m1/m=该传动轴即满足强度条件又满足刚度条件4、图示钢圆轴()所受扭矩分别为,及。已知: ,材料的许用切应力,许用单位长度扭转角。求轴的直径。解:按强度条件计算 按刚度条件计算 故,轴的直径取5、空心轴外径,内径,受外力偶矩如图。,。已知材料的,许用切应力,许用单位长度扭转角

25、。试校核此轴。解:最大扭矩校核强度条件: 校核刚度条件: 故,轴的强度满足,但刚度条件不满足。6、等截面传动轴,主动轮输入力矩,从动轮输出力矩分别为,已知材料的,许用切应力,许用单位长度扭转角。试设计轴的直径;按经济的观点各轮应如何安排更为合理?为什么?解:设计轴的直径:最大扭矩按强度条件计算: 按刚度条件计算: 故,轴的直径取将主动轮与从动轮2对换,这样可以降低最大弯矩值,从而减少材料消耗,而降低成本。弯曲1、简支梁约束及尺寸如图: 1、试求A、B的约束力;2、列出BC的剪力、弯矩方程; 3、画出该梁的剪力、弯矩图。2mAB2mCxRARB2kN2kN4kNm1kNm(1) 求支反力(2)

26、列剪力和弯矩方程2、图示梁的载荷P、q、m和尺寸a皆为已知。(1)列出梁的剪力方程和弯矩方程(a、b);(2)作剪力图和弯矩图;(a)aa2PM0=PaCBA(3)判定Qmax和Mmax。(1) 求约束反力x2PM0=PaCBARAMA(2) 列剪力方程和弯矩方程xQ2P(+)(3) 画Q图和M图xMPa(+)(-)Pa(e)a/2a/2CBAq3、RAa/2a/2CBAqRB(1) 求约束反力(2) 直接画Q图和M图Qx(+)(-)3qa/8qa/8Mx(+)9qa2/128qa2/164、 最大剪力和最大弯矩值(g)a/2CBAaqRCa/2CBAaqRB(1) 求约束反力(2) 直接画Q图和M图Q5qa/8(+)(-)(-)x3qa/8qa/2M9qa2/128(+)x(-)qa2/8(3) 最大剪力和最大弯矩值5、作图示梁的剪力图和弯矩图,并求出支座反力、和。qP=qa2aaABCFBFA0.5qaqa qa20.125qa2解:1。求支座反力 解得:

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 成人自考

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁