《《计量经济学》第五章题及答案 .doc》由会员分享,可在线阅读,更多相关《《计量经济学》第五章题及答案 .doc(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第五章 异方差二、简答题1异方差的存在对下面各项有何影响?(1)OLS估计量及其方差;(2)置信区间;(3)显著性t检验和F检验的使用。2产生异方差的经济背景是什么?检验异方差的方法思路是什么?3从直观上解释,当存在异方差时,加权最小二乘法(WLS)优于OLS法。4下列异方差检查方法的逻辑关系是什么?(1)图示法(2)Park检验(3)White检验5在一元线性回归函数中,假设误差方差有如下结构:如何变换模型以达到同方差的目的?我们将如何估计变换后的模型?请列出估计步骤。三、计算题1考虑如下两个回归方程(根据19461975年美国数据)(括号中给出的是标准差):(2.73)(0.0060) (
2、0.0736)R=0.999: (2.22) (0.0068)(0.0597)R=0.875式中,C为总私人消费支出;GNP为国民生产总值;D为国防支出;t为时间。研究的目的是确定国防支出对经济中其他支出的影响。(1)将第一个方程变换为第二个方程的原因是什么?(2)如果变换的目的是为了消除或者减弱异方差,那么我们对误差项要做哪些假设?(3)如果存在异方差,是否已成功地消除异方差?请说明原因。(4)变换后的回归方程是否一定要通过原点?为什么?(5)能否将两个回归方程中的R加以比较?为什么?21964年,对9966名经济学家的调查数据如下:年龄中值工资 单位:美元/年年龄2024252930343
3、53940444549505455596064656970+中值工资7800840097001150013000148001500015000150001450012000 资料来源:“The Structure of Economists Employment and Salaries”, Committee on the National Science Foundation Report on the Economics Profession, American Economics Review, vol.55, No.4, December 1965.(1)建立适当的模型解释平均工资与
4、年龄间的关系。为了分析的方便,假设中值工资是年龄区间中点的工资。(2)假设误差与年龄成比例,变换数据求得WLS回归方程。(3)现假设误差与年龄的平方成比例,求WLS回归方程。(4)哪一个假设更可行?3参考下表给出的R&D数据。下面的回归方程给出了对数形式的R&D费用支出和销售额的回归结果。1988年美国研究与发展(R&D)支出费用 单位:百万美元序号行业销售额R&D费用支出利润1容器与包装6375.362.5185.12非银行金融机构11626.492.91569.53服务行业14655.1178.3274.84金属与采掘业21896.2258.42828.15住房与建筑业26408.3494
5、.7225.96一般制造业32405.61083.03751.97闲暇时间行业35107.71620.62884.18纸与林产品行业40295.4421.74645.79食品行业70761.6509.25036.410健康护理业80552.86620.113869.911宇航业95294.03918.64487.812消费品101314.11595.310278.913电器与电子产品116141.36107.58787.314化学工业122315.74454.116438.815聚合物141649.93163.89761.416办公设备与计算机175025.813210.719774.517燃
6、料230614.51703.822626.618汽车行业293543.09528.218415.4说明:行业是按销售额递增的次序排列的。资料来源:Business Week, Special 1989 Bonus Issue, R&D Scorecard. : (1.8480)(0.16804) t: (-3.9582)(7.8687) R=0.7947(1)根据上表提供的数据,验证这个回归结果。(2)分别将残差的绝对值和残差平方值对销售额对数描图。该图是否标明存在着异方差?(3)对回归的残差进行Park检验和Glejser检验。我们能得出什么结论?(4)如果有证据表明现行回归函数 :(990
7、.99)(0.0083) t: (0.1948)(3.8434) R=0.4783存在异方差。而在对数对数模型中没有证据表明存在异方差,那么应选择哪个模型?为什么第三部分 参考答案二、简答题1答:(1)OLS估计量仍然是线性的,也是无偏的。但它们不再具有最小方差性,即它们不是有效的。根据常用于OLS估计量方差的公式得到的方差通常是有偏的。如果OLS高估了估计量的真实方差,则产生正的偏差;如果OLS低估了估计量的真实方差,则会产生负的偏差。(2)(3)由于我们是在同方差的基础上讨论t分布和F分布,因此建立在它们之上的置信区间和假设检验是不可靠的。2答:产生异方差的经济背景可能有:(1)按照学习改
8、错模型,人们在学习的过程中,其行为误差随时间的推移而减少。 在这种情况下,会减少。(2)随着收入增长,人们有更多的备用收入,从而如何支配他们的收入会有更大的选择范围。(3)随着数据采集技术的改进,可能减小。(4)异方差性还会因为异常值得出现而产生。(5)异方差的另一来源是对经典回归模型的破坏,也就是回归模型的设定不正确。有一些看来是异方差性的问题,其实是由于模型中的一些重要变量被忽略了。(6)异方差性问题在横截面数据中比在时间序列数据中更为常见。检验异方差的方法思路是:相对于不同的样本点,也就是相对于不同的解释变量观测值,若随机误差项具有不同的方差,才会继续检验异方差性,也就是检验随机误差项的
9、方差与解释变量观测值之间的相关性。3答:OLS法是最小化无权重或等权重的残差平方和;而WLS法是最小化一个加权残差平方和。导致的结果是:在异方差存在的情况下,用OLS法得到的估计量虽然仍是线性和无偏的,但并不是有效的;而用WLS法得到的估计量却是BLUE。4答:在异方差的检验中,图示法是最初的最直观的方法。通过残差与相应的观察值作散点图,能从图形上直观地判断是否有异方差存在的可能性。虽然方便且直观,但缺乏规范性,以及若模型中有较多的解释变量时,描图就成为一件繁琐的工作。Park检验就是在规范性上更近了一步。帕克建议用残差来代替误差项,建立残差和解释变量之间的回归模型,从系数的显著性角度来定量地
10、判断残差与解释变量之间是否存在相关关系,从而原始模型是否存在异方差性。White检验在Park检验的基础上又有了发展,在建立残差与解释变量的回归关系时,不仅考虑了解释变量本身,还考虑了解释变量彼此间的交叉乘积,使得检验更加严谨。5答:假设一元线性回归模型为:,模型转换为:可以写成:其中,和表示转换模型的参数。经变换后,误差项有如下特点:因此,这样的变换就使得模型满足了同方差性的假定。估计的具体步骤为:第一步,对模型,i=1,2,3,n运用最小二乘法求出残差。第二步,假设为变量z的函数f(z),即。用代替对以下模型运用最小二乘法:,i=1,2,p求出估计值。第三步,得出的估计值:,i=1,2,3
11、,n第四步,利用估计值作如下变换:,i=1,2,3,n对变换后的上述模型运用最小二乘法进行估计。三、计算题1解:(1)原因有二:第一,将被解释变量和解释变量均转换为支出与GNP的比值,表示该项支出在国民生产总值中的比重,更加强了模型对于经济现象的解释作用。第二,有可能是因为该模型中出现了异方差的现象,转换方程是想变异方差为同方差,使得估计结果是BLUE估计量。(2)误差项的期望为零,方差为,即,(3)基于(2)的假设,通过这样的转换,转换模型的误差项已具有如下特点: 这样的误差项已符合使用OLS的假定,可以说是已消除了异方差。(4)变换后的回归模型是不一定通过原点的。在本例中,变换后的模型解释
12、变量为,被解释变量为,而这一项近似地等于零,可以忽略不计。因此,模型中还有一个正截距,不通过原点。(5)不能单纯地用R的值对两个回归方程进行比较。虽然,R值表示的是解释变量对被解释变量的解释程度的大小,R越接近1,表示模型的解释能力越强。但是,在本例中,由于原始模型中的误差项具有异方差性质,这时R值是受到怀疑的,因为有可能是异方差的存在影响了模型的R值。所以转换前后模型的R孰大孰小,并不能据此判断两个模型的解释能力孰弱孰强。2解:(1)为了分析的方便,先将原始数据处理如下:年龄22273237424752576267中值工资78008400970011500130001480015000150
13、001500014500设一元线性回归模型为:其中,表示中值工资,表示年龄,和分别是回归系数,是误差项。(2)假设误差与年龄成比例,模型可以变换为:可以写成:其中,和分别是回归系数,是误差项。变量数据列表如下:1662.9656 1616.5808 1714.7339 1890.58842005.94352158.80192080.12571986.79851905.00191771.45690.2132 0.19250.1768 0.1644 0.1543 0.1459 0.1387 0.1325 0.1270 0.1222 4.69045.19625.65696.08286.48076.8
14、5577.21117.54987.87408.1854对变换后的模型使用OLS法进行估计,结果是:即: R=0.8333(3)假设误差与年龄的平方成比例,模型可以变换为:可以写成:其中,和分别是回归系数,是误差项。变量数据列表如下:354.5455311.1111303.125310.8108309.5238314.8936288.4615263.1579241.9355216.41790.0454550.0370370.031250.0270270.023810.0212770.0192310.0175440.0161290.014925对变换后的模型使用OLS法进行估计,结果是:即: R=
15、0.8148(4)比较两个模型的R,一般认为,第一种假设更为可行。理论上来说,在第一种假设下,模型变换后产生了两个解释变量,即和,这样就能使得模型的解释能力增强。3 解:(1)变量数据列表如下:8.7602 9.3610 9.5925 9.9941 10.1814 10.3861 10.4662 10.6040 11.1671 4.1352 4.5315 5.1835 5.5545 6.2040 6.9875 7.3906 6.0443 6.2328 11.2967 11.4647 11.5260 11.6626 11.7144 11.8611 12.0727 12.3485 12.5898
16、8.7979 8.2735 7.3748 8.7173 8.4016 8.0595 9.4888 7.4406 9.1620 使用OLS法进行估计,结果是: 回归系数数值上的微小差异可能是由于计算过程中四舍五入所致,可以认为回归结果一致。(2)的估计值残差残差绝对值残差平方值8.76024.13524.2182-0.08300.08300.00699.36104.53155.0127-0.48120.48120.23159.59255.18355.3188-0.13540.13540.01839.99415.55455.8498-0.29520.29520.087210.18146.20406
17、.09750.10640.10640.011310.38616.98756.36810.61940.61940.383610.46627.39066.47400.91650.91650.840010.60406.04436.6563-0.61200.61200.374511.16716.23287.4008-1.16801.16801.364211.29678.79797.57221.22571.22571.502311.46478.27357.79440.47910.47910.229511.52607.37487.8754-0.50060.50060.250611.66268.71738.
18、05600.66130.66130.437311.71448.40168.12450.27710.27710.076811.86118.05958.3186-0.25900.25900.067112.07279.48888.59830.89050.89050.792912.34857.44068.9630-1.52241.52242.317712.58989.16209.2821-0.12010.12010.0144分别将残差的绝对值和残差平方值对销售额对数描图,如下: 从以上两图中可以看到,不管是残差的绝对值,还是残差的平方值,都与解释变量有某种系统性的关系,因此认为模型可能存在异方差。(3)Park检验使用残差的平方值对解释变量进行回归:回归模型:回归结果是: t: (1.6596)Glejser检验使用残差的绝对值对解释变量进行回归:回归模型:回归结果是: t: (1.6244)回归系数不显著,不能拒绝零假设,可以解释为同方差。(4)既然能够消除异方差,当然是应该选择对数对数模型。从某种程度上来说,双对数模型是对原始模型的一种变换,使得模型符合OLS的基本假定,从而能够得到满足BLUE的估计量,是一种广义最小二乘法。