《数学一 函数与导数、不等式 第1讲 函数图象与性质 文 .ppt》由会员分享,可在线阅读,更多相关《数学一 函数与导数、不等式 第1讲 函数图象与性质 文 .ppt(33页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第第1讲函数图象与性质讲函数图象与性质高考定位1.以基本初等函数为载体,考查函数的定义域、最值、奇偶性、单调性和周期性;2.利用函数的图象研究函数性质,能用函数的图象性质解决简单问题;3.函数与方程思想、数形结合思想是高考的重要思想方法.真真 题题 感感 悟悟答案D答案C3.(2017全国卷)已知函数f(x)ln xln(2x),则()A.f(x)在(0,2)上单调递增B.f(x)在(0,2)上单调递减C.yf(x)的图象关于直线x1对称D.yf(x)的图象关于点(1,0)对称 解析由题意知,f(x)ln xln(2x)的定义域为(0,2),f(x)lnx(2x)ln(x1)21,由复合函数的
2、单调性知,函数f(x)在(0,1)上单调递增,在(1,2)上单调递减,所以排除A,B;又f(2x)ln(2x)ln xf(x),所以f(x)的图象关于直线x1对称,C正确,D错误.答案C答案B考考 点点 整整 合合1.函数的性质(1)单调性:单调性是函数在其定义域上的局部性质.证明函数的单调性时,规范步骤为取值、作差、变形、判断符号和下结论.复合函数的单调性遵循“同增异减”的原则.(2)奇偶性:若f(x)是偶函数,则f(x)f(x).若f(x)是奇函数,0在其定义域内,则f(0)0.奇函数在关于原点对称的单调区间内有相同的单调性,偶函数在关于原点对称的单调区间内有相反的单调性.易错提醒错用集合
3、运算符号致误:函数的多个单调区间若不连续,不能用符号“”连接,可用“和”或“,”连接.2.函数的图象(1)对于函数的图象要会作图、识图和用图,作函数图象有两种基本方法:一是描点法;二是图象变换法,其中图象变换有平移变换、伸缩变换和对称变换.(2)在研究函数性质特别是单调性、值域、零点时,要注意结合其图象研究.(3)函数图象的对称性若函数yf(x)满足f(ax)f(ax),即f(x)f(2ax),则yf(x)的图象关于直线xa对称;若函数yf(x)满足f(ax)f(ax),即f(x)f(2ax),则yf(x)的图象关于点(a,0)对称.热点一函数及其表示答案(1)C(2)C探究提高1.(1)给出
4、解析式的函数的定义域是使解析式有意义的自变量的集合,只需构建不等式(组)求解即可.(2)抽象函数:根据f(g(x)中g(x)的范围与f(x)中x的范围相同求解.2.对于分段函数的求值问题,必须依据条件准确地找出利用哪一段求解;形如f(g(x)的函数求值时,应遵循先内后外的原则.答案(1)D(2)A热点二函数的图象及应用命题角度1函数图象的识别答案A命题角度2函数图象的应用【例22】(1)(2017历城冲刺)已知f(x)2x1,g(x)1x2,规定:当|f(x)|g(x)时,h(x)|f(x)|;当|f(x)|g(x)时,h(x)g(x),则h(x)()解析(1)画出y|f(x)|2x1|与yg
5、(x)1x2的图象,它们交于A,B两点.由“规定”,在A,B两侧,|f(x)|g(x),故h(x)|f(x)|;在A,B之间,|f(x)|g(x),故h(x)g(x).综上可知,yh(x)的图象是图中的实线部分,因此h(x)有最小值1,无最大值.答案(1)C(2)D探究提高1.已知函数的解析式,判断其图象的关键是由函数解析式明确函数的定义域、值域、单调性、奇偶性、周期性等,以及函数图象上的特殊点,根据这些性质对函数图象进行具体分析判断.2.(1)运用函数图象解决问题时,先要正确理解和把握函数图象本身的含义及其表示的内容,熟悉图象所能够表达的函数的性质.(2)图象形象地显示了函数的性质,因此,函
6、数性质的确定与应用及一些方程、不等式的求解常与图象数形结合研究.(2)如图,函数f(x)的图象为折线ACB,则不等式f(x)log2(x1)的解集是()A.(1,0B.1,1C.(1,2D.(1,1 答案(1)A(2)D热点三函数的性质与应用【例3】(1)(2017山东卷)已知f(x)是定义在R上的偶函数,且f(x4)f(x2).若当x3,0时,f(x)6x,则f(919)_.(2)(2017天津卷)已知奇函数f(x)在R上是增函数,g(x)xf(x).若ag(log25.1),bg(20.8),cg(3),则a,b,c的大小关系为()A.abc B.cbaC.bac D.bclog25.12
7、20.8,且ag(log25.1)g(log25.1),g(3)g(log25.1)g(20.8),则cab.法二(特殊化)取f(x)x,则g(x)x2为偶函数且在(0,)上单调递增,又3log25.120.8,从而可得cab.答案(1)6(2)C 探究提高1.利用函数的奇偶性和周期性可以转化函数的解析式、图象和性质,把不在已知区间上的问题,转化到已知区间上求解.2.函数单调性应用:可以比较大小、求函数最值、解不等式、证明方程根的唯一性.解析(1)因为函数f(x)为奇函数,所以f(0)0,则30a0,a1.当x0时,f(x)3x1,则f(2)3218,因此f(2)f(2)8.(2)因为f(2)0,f(x1)0,所以f(x1)f(2).又因为f(x)是偶函数且在0,)上单调递减,所以f(|x1|)f(2),即|x1|2,解得1x3.答案(1)8(2)(1,3)3.三种作函数图象的基本思想方法(1)通过函数图象变换利用已知函数图象作图;(2)对函数解析式进行恒等变换,转化为已知方程对应的曲线;(3)通过研究函数的性质,明确函数图象的位置和形状.4.函数是中学数学的核心,函数思想是重要的思想方法,利用函数思想研究方程(不等式)才能抓住问题的本质,对于给定的函数若不能直接求解或画出图形,常会通过分解转化为两个函数图象,数形结合直观求解.