《2018年全国普通高等学校招生统一考试文科数学(北京卷)含解析.doc》由会员分享,可在线阅读,更多相关《2018年全国普通高等学校招生统一考试文科数学(北京卷)含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2018年全国普通高等学校招生统一考试文科数学(北京卷)一、选择题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。1. 已知集合A=𝑥|𝑥|2),B=2,0,1,2,则()A. 0,1B. 1,0,1C. 2,0,1,2D. 1,0,1,22. 在复平面内,复数的共轭复数对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 执行如图所示的程序框图,输出的s值为A. B. C. D. 4. 设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的A. 充分而不必要条件B. 必要而不充分条件C
2、. 充分必要条件D. 既不充分也不必要条件5. “十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为A. B. C. D. 6. 某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A 1B. 2C. 3D. 47. 在平面直角坐标系中,是圆上的四段弧(如图),点P在其中一段上,角以O𝑥为始边,OP为终边,若,则P所在的圆弧是A. B. C. D.
3、 8. 设集合则( )A. 对任意实数a,B. 对任意实数a,(2,1)C. 当且仅当a0时,(2,1)D. 当且仅当 时,(2,1)第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。9. 设向量 =(1,0), =(1,m),若,则m=_.10. 已知直线l过点(1,0)且垂直于𝑥轴,若l被抛物线截得的线段长为4,则抛物线的焦点坐标为_.11. 能说明“若ab,则”为假命题的一组a,b的值依次为_.12. 若双曲线的离心率为,则a=_.13. 若x,y满足x+1y2x,则2yx的最小值是_14. 若的面积为,且C为钝角,则B=_;的取值范围是_.三、解
4、答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程。15. 设是等差数列,且.()求的通项公式;()求.16 已知函数.()求的最小正周期; ()若在区间上的最大值为,求的最小值.17. 电影公司随机收集了电影的有关数据,经分类整理得到下表:电影类型第一类第二类第三类第四类第五类第六类电影部数好评率好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.()从电影公司收集的电影中随机选取部,求这部电影是获得好评的第四类电影的概率;()随机选取部电影,估计这部电影没有获得好评的概率; ()电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有
5、两类电影的好评率数据发生变化,那么哪类电影的好评率增加,哪类电影的好评率减少,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)18. 如图,在四棱锥中,底面为矩形,平面平面,、分别为、的中点.()求证:;()求证:平面平面;()求证:平面.19. 设函数.()若曲线在点处的切线斜率为0,求a;()若在处取得极小值,求a取值范围.20. 已知椭圆离心率为,焦距为.斜率为的直线与椭圆有两个不同的交点、.()求椭圆的方程; ()若,求的最大值;()设,直线与椭圆的另一个交点为,直线与椭圆的另一个交点为.若、和点 共线,求.绝密启封并使用完毕前2018年普通高等学校招生全国
6、统一考试数学(文)(北京卷)本试卷共5页,150分。考试时长120分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本试卷和答题卡一并交回。第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。1. 已知集合A=𝑥|𝑥|2)B=2,0,1,2,则()A. 0,1B. 1,0,1C. 2,0,1,2D. 1,0,1,2【答案】A【解析】【详解】分析:先解含绝对值不等式得集合A,再根据数轴求集合交集.详解:因此AB=,选A.点睛:认清元素的属性,解决集合问题时,认清集合中元素的属性(是
7、点集、数集或其他情形)和化简集合是正确求解的两个先决条件.2. 在复平面内,复数的共轭复数对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】【详解】分析:将复数化为最简形式,求其共轭复数,找到共轭复数在复平面的对应点,判断其所在象限.详解:的共轭复数为对应点为,在第四象限,故选D.点睛:此题考查复数的四则运算,属于送分题,解题时注意审清题意,切勿不可因简单导致马虎丢分.3. 执行如图所示的程序框图,输出的s值为A. B. C. D. 【答案】B【解析】【详解】分析:初始化数值,执行循环结构,判断条件是否成立,详解:初始化数值循环结果执行如下:第一次:不成立;
8、第二次:成立,循环结束,输出,故选B.点睛:此题考查循环结构型程序框图,解决此类问题的关键在于:第一,要确定是利用当型还是直到型循环结构;第二,要准确表示累计变量;第三,要注意从哪一步开始循环,弄清进入或终止的循环条件、循环次数.4. 设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】B【解析】【分析】只需举出反例说明不充分即可,利用等比数列的性质论证必要性【详解】当时,不成等比数列,所以不是充分条件;当成等比数列时,则,所以是必要条件.综上所述,“”是“成等比数列”的必要
9、不充分条件故选B.【点睛】此题主要考查充分必要条件,实质是判断命题“”以及“”的真假.判断一个命题为真命题,要给出理论依据、推理证明;判断一个命题为假命题,只需举出反例即可,或者当一个命题正面很难判断真假时,可利用原命题与逆否命题同真同假的特点转化问题.5. “十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为A. B. C. D. 【答案】D【解析】【详解】分析:根据等比数
10、列定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解.详解:因为每一个单音与前一个单音频率比为,所以,又,则故选D.点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列. 等比数列的判断方法主要有如下两种:(1)定义法,若()或(), 数列是等比数列;(2)等比中项公式法,若数列中,且(),则数列是等比数列.6. 某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A. 1B. 2C. 3D. 4【答案】C【解析】【分析】【详解】分析:根据三视图还原几何体,利用勾股定理求出棱长,再利用勾股定理逆定理判断直角三角形的个数.详解:由三视图可得四棱锥,在四
11、棱锥中,由勾股定理可知:,则在四棱锥中,直角三角形有:共三个,故选C.点睛:此题考查三视图相关知识,解题时可将简单几何体放在正方体或长方体中进行还原,分析线面、线线垂直关系,利用勾股定理求出每条棱长,进而可进行棱长、表面积、体积等相关问题的求解.7. 在平面直角坐标系中,是圆上的四段弧(如图),点P在其中一段上,角以O𝑥为始边,OP为终边,若,则P所在的圆弧是A. B. C. D. 【答案】C【解析】【详解】分析:逐个分析A、B、C、D四个选项,利用三角函数的三角函数线可得正确结论.详解:由下图可得:有向线段为余弦线,有向线段为正弦线,有向线段为正切线.A选项:当点在上时,故A
12、选项错误;B选项:当点在上时,故B选项错误;C选项:当点在上时,故C选项正确;D选项:点在上且在第三象限,故D选项错误.综上,故选C.点睛:此题考查三角函数的定义,解题的关键是能够利用数形结合思想,作出图形,找到所对应的三角函数线进行比较.8. 设集合则( )A. 对任意实数a,B. 对任意实数a,(2,1)C. 当且仅当a1,则当时,;当时,.所以在x=1处取得极小值.若,则当时,所以.所以1不是的极小值点.综上可知,a的取值范围是.方法二:.(1)当a=0时,令得x=1.随x的变化情况如下表:x1+0极大值在x=1处取得极大值,不合题意.(2)当a0时,令得.当,即a=1时,在上单调递增,
13、无极值,不合题意.当,即0a1时,随x的变化情况如下表:x+00+极大值极小值x=1处取得极小值,即a1满足题意.(3)当a0时,令得.随x的变化情况如下表:x0+0极小值极大值在x=1处取得极大值,不合题意.综上所述,a的取值范围为.点睛:导数类问题是高考数学中的必考题,也是压轴题,主要考查的形式有以下四个:考查导数的几何意义,涉及求曲线切线方程的问题;利用导数证明函数单调性或求单调区间问题;利用导数求函数的极值最值问题;关于不等式的恒成立问题.解题时需要注意的有以下两个方面:在求切线方程问题时,注意区别在某一点和过某一点解题步骤的不同;在研究单调性及极值最值问题时常常会涉及到分类讨论的思想
14、,要做到不重不漏;不等式的恒成立问题属于高考中的难点,要注意问题转换的等价性.20. 已知椭圆的离心率为,焦距为.斜率为的直线与椭圆有两个不同的交点、.()求椭圆的方程; ()若,求的最大值;()设,直线与椭圆的另一个交点为,直线与椭圆的另一个交点为.若、和点 共线,求.【答案】();();().【解析】【分析】()根据题干可得的方程组,求解的值,代入可得椭圆方程;()设直线方程为,联立,消整理得,利用根与系数关系及弦长公式表示出,求其最值;()联立直线与椭圆方程,根据韦达定理写出两根关系,结合三点共线,利用共线向量基本定理得出等量关系,可求斜率.【详解】()由题意得,所以,又,所以,所以,所以椭圆的标准方程为;()设直线的方程为,由消去可得,则,即,设,则,则,易得当时,故的最大值为;()设,则 , ,又,所以可设,直线方程为,由消去可得,则,即,又,代入式可得,所以,所以,同理可得故,因为三点共线,所以,将点的坐标代入化简可得,即【点睛】本题主要考查椭圆与直线的位置关系,第一问只要找到三者之间的关系即可求解;第二问主要考查学生对于韦达定理及弦长公式的运用,可将弦长公式变形为,再将根与系数关系代入求解;第三问考查椭圆与向量的综合知识,关键在于能够将三点共线转化为向量关系,再利用共线向量基本定理建立等量关系求解.